Back to Search Start Over

Influence of Barrier Layers on ZrCoCe Getter Film Performance.

Authors :
Shi, Xin
Xiong, Yuhua
Wu, Huating
Source :
Materials (1996-1944). Apr2023, Vol. 16 Issue 7, p2916. 10p.
Publication Year :
2023

Abstract

Improving the vacuum degree inside the vacuum device is vital to the performance and lifespan of the vacuum device. The influence of the Ti and ZrCoCe barrier layers on the performance of ZrCoCe getter films, including sorption performance, anti-vibration performance, and binding force between the ZrCoCe getter film and the Ge substrate were investigated. In this study, the Ti and ZrCoCe barrier layers were deposited between the ZrCoCe getter films and Ge substrates. The microtopographies of barrier layers and the ZrCoCe getter film were analyzed using scanning electron microscopes. The sorption performance was evaluated using the constant-pressure method. The surface roughness of the barrier layers and the getter films was analyzed via atomic force microscopy. The binding force was measured using a nanoscratch tester. The anti-vibration performance was examined using a vibration test bench. The characterization results revealed that the Ti barrier layer significantly improved the sorption performance of the ZrCoCe getter film. When the barrier material was changed from ZrCoCe to Ti, the initial sorption speed of the ZrCoCe getter film increased from 141 to 176 cm3·s−1·cm−2, and the sorption quantity increased from 223 to 289 Pa·cm3·cm−2 in 2 h. The binding force between the Ge substrate and the ZrCoCe getter film with the Ti barrier layer was 171 mN, whereas that with the ZrCoCe barrier layer was 154 mN. The results showed that the Ti barrier layer significantly enhanced the sorption performance and binding force between the ZrCoCe getter film and the Ge substrate, which improved the internal vacuum level and the stability of the microelectromechanical system vacuum devices. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19961944
Volume :
16
Issue :
7
Database :
Academic Search Index
Journal :
Materials (1996-1944)
Publication Type :
Academic Journal
Accession number :
163042644
Full Text :
https://doi.org/10.3390/ma16072916