Back to Search Start Over

Simultaneously achieving high energy storage performance and low electrostrictive strain in BT‐based ceramics.

Authors :
Wei, Fangbin
Yang, Yule
Zhang, Leiyang
Alikin, Denis
Shur, Vladimir
Zhang, Amei
Du, Hongliang
Wei, Xiaoyong
Jin, Li
Source :
Journal of the American Ceramic Society. Jun2023, Vol. 106 Issue 6, p3491-3500. 10p. 1 Black and White Photograph, 1 Chart, 6 Graphs.
Publication Year :
2023

Abstract

Dielectric ceramics with high recoverable energy storage density (Wrec) and high energy storage efficiency (η) are urgently needed due to their potential application in pulse capacitor devices. However, the low η and breakdown strength (BDS) have produced a bottleneck for achieving high Wrec at high electric field. Here, we introduce Bi(Mg0.5Ti0.5)O3 (BMT) into Ba(Ti0.92Sn0.08)O3 (BTS) matrix to enhance the relaxor character of BTS–xBMT and reduce the electrostrictive strain generated during electric field loading. The enhanced relaxor character is beneficial for increasing the efficiency, whereas the reduced electrostrictive strain is profitable to increase the BDS. Furthermore, the BDS is significantly improved by the polymer viscous rolling process. Finally, the electrostrictive effect was considerably lowered in an optimized BTS–0.1BMT composition. More crucially, a high Wrec of 4.34 J/cm3 was attained accompanied by excellent temperature stability (variation ≤±5% between 30 and 120°C). The current results show that the developed dielectric ceramics can be used in pulse capacitor devices for energy storage. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00027820
Volume :
106
Issue :
6
Database :
Academic Search Index
Journal :
Journal of the American Ceramic Society
Publication Type :
Academic Journal
Accession number :
162877544
Full Text :
https://doi.org/10.1111/jace.19017