Back to Search Start Over

Passive Electro-Optical Tracking of Resident Space Objects for Distributed Satellite Systems Autonomous Navigation.

Authors :
Hussain, Khaja Faisal
Thangavel, Kathiravan
Gardi, Alessandro
Sabatini, Roberto
Source :
Remote Sensing. Mar2023, Vol. 15 Issue 6, p1714. 27p.
Publication Year :
2023

Abstract

Autonomous navigation (AN) and manoeuvring are increasingly important in distributed satellite systems (DSS) in order to avoid potential collisions with space debris and other resident space objects (RSO). In order to accomplish collision avoidance manoeuvres, tracking and characterization of RSO is crucial. At present, RSO are tracked and catalogued using ground-based observations, but space-based space surveillance (SBSS) represents a valid alternative (or complementary asset) due to its ability to offer enhanced performances in terms of sensor resolution, tracking accuracy, and weather independence. This paper proposes a particle swarm optimization (PSO) algorithm for DSS AN and manoeuvring, specifically addressing RSO tracking and collision avoidance requirements as an integral part of the overall system design. More specifically, a DSS architecture employing hyperspectral sensors for Earth observation is considered, and passive electro-optical sensors are used, in conjunction with suitable mathematical algorithms, to accomplish autonomous RSO tracking and classification. Simulation case studies are performed to investigate the tracking and system collision avoidance capabilities in both space-based and ground-based tracking scenarios. Results corroborate the effectiveness of the proposed AN technique and highlight its potential to supplement either conventional (ground-based) or SBSS tracking methods. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20724292
Volume :
15
Issue :
6
Database :
Academic Search Index
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
162815146
Full Text :
https://doi.org/10.3390/rs15061714