Back to Search Start Over

High-velocity impact fragmentation of additively-manufactured metallic tubes.

Authors :
Nieto-Fuentes, J.C.
Espinoza, J.
Sket, F.
Rodríguez-Martínez, J.A.
Source :
Journal of the Mechanics & Physics of Solids. May2023, Vol. 174, pN.PAG-N.PAG. 1p.
Publication Year :
2023

Abstract

In this paper, we have developed and demonstrated a novel high-velocity impact experiment to study dynamic fragmentation of additively-manufactured metals. The experiment consists of a light-gas gun that fires a conical nosed cylindrical projectile, that impacts axially on a thin-walled cylindrical tube fabricated by 3 D printing. The diameter of the cylindrical part of the projectile is approximately twice greater than the inner diameter of the cylindrical target, which is expanded as the projectile moves forward, and eventually breaks into fragments. The experiments have been performed for impact velocities ranging from ≈ 180 m / s to ≈ 390 m / s , leading to strain rates in the cylindrical target that vary between ≈ 9000 s-1 and ≈ 23500 s − 1 . The cylindrical samples tested are printed by Selective Laser Melting out of aluminum alloy AlSi10Mg, using two printing qualities, with two different outer diameters, 12 mm and 14 mm, and two different wall thicknesses, 1 mm and 2 mm. A salient feature of this work is that we have characterized by X-ray tomography the porous microstructure of selected specimens before testing. Three-dimensional analysis of the tomograms has shown that the initial void volume fraction of the printed cylinders varies between 1.9% and 6.1%, and the maximum equivalent diameter of the 10 largest pores ranges from 143 μ m to 216 μ m , for the two different printing conditions. Two high-speed cameras have been used to film the experiments and thus to obtain time-resolved information on the mechanics of formation and propagation of fractures. Moreover, fragments ejected from the samples have been recovered, sized, weighted and analyzed using X-ray tomography, so that we have obtained indications on the effect of porous microstructure, specimen dimensions and loading velocity on the number and distribution of fragment sizes. To the authors' knowledge, this is the first paper (i) providing a systematic experimental study (34 impact tests) on the fragmentation behavior of printed specimens, and (ii) including 3 D reconstructions of dynamic cracks in porous additively-manufactured materials. • A novel high-velocity impact experiment to study dynamic fragmentation. • 3D-printed AlSi10Mg cylindrical tubes have been impacted up to 400 m/s. • Comparison of pre- and post-mortem X-ray analysis of specimens and fragments. • Different printing qualities, specimen diameters and thicknesses. • Characterization of the effect of porosity on dynamic fragmentation. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00225096
Volume :
174
Database :
Academic Search Index
Journal :
Journal of the Mechanics & Physics of Solids
Publication Type :
Periodical
Accession number :
162592109
Full Text :
https://doi.org/10.1016/j.jmps.2023.105248