Back to Search
Start Over
Enhanced temperature sensing performance of Er3+, Yb3+: PLZT ceramic based on emissions of Stark sublevels.
- Source :
-
Applied Physics A: Materials Science & Processing . Mar2023, Vol. 129 Issue 3, p1-7. 7p. 3 Charts, 6 Graphs. - Publication Year :
- 2023
-
Abstract
- In this study, the temperature sensing behaviors of emissions of Stark sublevels in Er3+/Yb3+ codoped lead lanthanum zirconate titanate (PLZT) transparent ceramic were examined. Based on the temperature-dependent upconversion fluorescence spectra excited by 980 nm, the emission intensities of the Stark sublevels 2H11/2(1, 2), 4S3/2(1, 2), and 4F9/2(1, 2, 3) were obtained upon increasing the temperature from 160 to 320 K. All the transitions present strong temperature dependence under the competitive effects of thermal excitation and nonradiative relaxation. The optical temperature sensing properties of 2H11/2/4S3/2(1), 2H11/2/4S3/2(2), 2H11/2/4F9/2(1), 2H11/2/4F9/2(2), and 2H11/2/4F9/2(3) were investigated using the fluorescence intensity ratio (FIR) technique. The largest absolute sensitivity Sa of 142.4 × 10â4 Kâ1 was obtained based on the FIRs of 2H11/2/4F9/2(1) at 320 K, which is approximately 26 times larger than that of traditionally used thermal coupled levels 2H11/2/4S3/2 in the considered sample. In contrast, the maximum relative sensitivity Sr was 2.21% Kâ1 at 203 K. A comparison of these results with those of other Er3+/Yb3+ codoped materials reveals that Er3+/Yb3+: PLZT ceramics are a promising thermometer material at low temperatures. Applying FIRs based on the photoluminescence of Stark sublevels is a practical approach to achieving greater thermometric efficiency. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 09478396
- Volume :
- 129
- Issue :
- 3
- Database :
- Academic Search Index
- Journal :
- Applied Physics A: Materials Science & Processing
- Publication Type :
- Academic Journal
- Accession number :
- 162587489
- Full Text :
- https://doi.org/10.1007/s00339-023-06458-8