Back to Search Start Over

Anti-PD-1 antibody-activated Th17 cells subvert re-invigoration of antitumor cytotoxic T-lymphocytes via myeloid cell-derived COX-2/PGE2.

Authors :
Li, Qingsheng
Goggin, Kevin E.
Seo, SeonYeong
Warawa, Jonathan M.
Egilmez, Nejat K.
Source :
Cancer Immunology, Immunotherapy. Apr2023, Vol. 72 Issue 4, p1047-1058. 12p.
Publication Year :
2023

Abstract

Anti-PD-1 antibody-mediated activation of type 17 T-cells undermines checkpoint inhibitor therapy in the LSL-KrasG12D murine lung cancer model. Herein, we establish that the Th17 subset is the primary driver of resistance to therapy demonstrate that the ontogeny of dysplasia-associated Th17 cells is driven by microbiota-conditioned macrophages; and identify the IL-17-COX-2-PGE2 axis as the mediator of CD8+ cytotoxic T-lymphocyte de-sensitization to checkpoint inhibitor therapy. Specifically, anti-PD-1 treatment of LSL-KrasG12D mice, in which CD4+ T-cells were deficient for RORc, resulted in a 60% increase in CTL cytotoxicity and a 2.5-fold reduction in tumor burden confirming the critical role of Th17 cells in resistance to therapy. Lung-specific depletion of microbiota reduced Th17 cell prevalence and tumor burden by 5- and 2.5-fold, respectively; establishing a link between microbiota and Th17 cell-driven tumorigenesis. Importantly, lung macrophages from microbiota sufficient, but not from microbiota-deficient, mice polarized naïve CD4+ T-cells to a Th17 phenotype, highlighting their role in bridging microbiota and Th17 immunity. Further, treatment with anti-PD-1 enhanced COX-2 and PGE2 levels, whereas neutralization of IL-17 diminished this effect. In contrast, inhibition of COX-2 rescued CTL activity and restored tumor suppression in anti-PD-1-treated mice, revealing the molecular basis of IL-17-mediated resistance to checkpoint blockade. Clinical implications of these findings are discussed. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
03407004
Volume :
72
Issue :
4
Database :
Academic Search Index
Journal :
Cancer Immunology, Immunotherapy
Publication Type :
Academic Journal
Accession number :
162548950
Full Text :
https://doi.org/10.1007/s00262-022-03285-3