Back to Search
Start Over
Optimality of the triangular lattice for Lennard–Jones type lattice energies: a computer-assisted method.
- Source :
-
Journal of Physics A: Mathematical & Theoretical . 4/11/2023, Vol. 56 Issue 14, p1-19. 19p. - Publication Year :
- 2023
-
Abstract
- It is well-known that any Lennard–Jones type potential energy must have a periodic ground state given by a triangular lattice in dimension 2. In this paper, we describe a computer-assisted method that rigorously shows such global minimality result among 2-dimensional lattices once the exponents of the potential have been fixed. The method is applied to the widely used classical (12 , 6) Lennard–Jones potential, which is the main result of this work. Furthermore, a new bound on the inverse density (i.e. the co-volume) for which the triangular lattice is minimal is derived, improving those found in (Bétermin and Zhang 2015 Commun. Contemp. Math. 17 1450049) and (Bétermin 2016 SIAM J. Math. Anal. 48 3236–3269). The same results are also shown to hold for other exponents as additional examples and a new conjecture implying the global optimality of a triangular lattice for any parameters is stated. [ABSTRACT FROM AUTHOR]
- Subjects :
- *LATTICE constants
*POTENTIAL energy
*EXPONENTS
*ZETA functions
*MATHEMATICS
Subjects
Details
- Language :
- English
- ISSN :
- 17518113
- Volume :
- 56
- Issue :
- 14
- Database :
- Academic Search Index
- Journal :
- Journal of Physics A: Mathematical & Theoretical
- Publication Type :
- Academic Journal
- Accession number :
- 162535206
- Full Text :
- https://doi.org/10.1088/1751-8121/acc21d