Back to Search Start Over

Optimality of the triangular lattice for Lennard–Jones type lattice energies: a computer-assisted method.

Authors :
Bétermin, Laurent
Source :
Journal of Physics A: Mathematical & Theoretical. 4/11/2023, Vol. 56 Issue 14, p1-19. 19p.
Publication Year :
2023

Abstract

It is well-known that any Lennard–Jones type potential energy must have a periodic ground state given by a triangular lattice in dimension 2. In this paper, we describe a computer-assisted method that rigorously shows such global minimality result among 2-dimensional lattices once the exponents of the potential have been fixed. The method is applied to the widely used classical (12 , 6) Lennard–Jones potential, which is the main result of this work. Furthermore, a new bound on the inverse density (i.e. the co-volume) for which the triangular lattice is minimal is derived, improving those found in (Bétermin and Zhang 2015 Commun. Contemp. Math. 17 1450049) and (Bétermin 2016 SIAM J. Math. Anal. 48 3236–3269). The same results are also shown to hold for other exponents as additional examples and a new conjecture implying the global optimality of a triangular lattice for any parameters is stated. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
17518113
Volume :
56
Issue :
14
Database :
Academic Search Index
Journal :
Journal of Physics A: Mathematical & Theoretical
Publication Type :
Academic Journal
Accession number :
162535206
Full Text :
https://doi.org/10.1088/1751-8121/acc21d