Back to Search Start Over

Genomes of two Extinct‐in‐the‐Wild reptiles from Christmas Island reveal distinct evolutionary histories and conservation insights.

Authors :
Dodge, Tristram O.
Farquharson, Katherine A.
Ford, Claire
Cavanagh, Lisa
Schubert, Kristen
Schumer, Molly
Belov, Katherine
Hogg, Carolyn J.
Source :
Molecular Ecology Resources. Mar2023, p1. 17p. 4 Illustrations, 1 Chart.
Publication Year :
2023

Abstract

Genomics can play important roles in biodiversity conservation, especially for Extinct‐in‐the‐Wild species where genetic factors greatly influence risk of total extinction and probability of successful reintroductions. The Christmas Island blue‐tailed skink (Cryptoblepharus egeriae) and Lister's gecko (Lepidodactylus listeri) are two endemic reptile species that went extinct in the wild shortly after the introduction of a predatory snake. After a decade of management, captive populations have expanded from 66 skinks and 43 geckos to several thousand individuals; however, little is known about patterns of genetic variation in these species. Here, we use PacBio HiFi long‐read and Hi‐C sequencing to generate highly contiguous reference genomes for both reptiles, including the XY chromosome pair in the skink. We then analyse patterns of genetic diversity to infer ancient demography and more recent histories of inbreeding. We observe high genome‐wide heterozygosity in the skink (0.007 heterozygous sites per base‐pair) and gecko (0.005), consistent with large historical population sizes. However, nearly 10% of the blue‐tailed skink reference genome falls within long (>1 Mb) runs of homozygosity (ROH), resulting in homozygosity at all major histocompatibility complex (MHC) loci. In contrast, we detect a single ROH in Lister's gecko. We infer from the ROH lengths that related skinks may have established the captive populations. Despite a shared recent extinction in the wild, our results suggest important differences in these species' histories and implications for management. We show how reference genomes can contribute evolutionary and conservation insights, and we provide resources for future population‐level and comparative genomic studies in reptiles. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1755098X
Database :
Academic Search Index
Journal :
Molecular Ecology Resources
Publication Type :
Academic Journal
Accession number :
162532118
Full Text :
https://doi.org/10.1111/1755-0998.13780