Back to Search Start Over

Role of electrode and proton exchange membrane configurations on microbial fuel cell performance toward bioelectricity generation integrated wastewater treatment.

Authors :
Sevda, Surajbhan
Garlapati, Vijay Kumar
Sreekrishnan, T. R.
Source :
Journal of Environmental Science & Health. Part A. Toxic/Hazardous Substances & Environmental Engineering. 2023, Vol. 58 Issue 1, p13-23. 11p.
Publication Year :
2023

Abstract

In the present study, the effects of electrode surface area, proton exchange membrane area, and volume of the anodic chamber were investigated on the performance of five different dual chamber microbial fuel cells (MFC) using synthetic wastewater toward wastewater treatment coupled electricity generation. In the batch mode, the five different MFC's were operated with the anodic chamber volumes of 93–890 mL, 17.33–56.77 cm2 electrode surface area, obtained volumetric power densities of 137.72–58.13 mW/m3, and unit area power densities ranging from 27.04 to 11.94 mW/m2. Fed-batch studies were done with the MFC having 740 mL anodic chamber volume at different wastewater COD concentrations. The power density per unit area increased from 22.93 mW/m2 to 36.25 cm2 when the distance between electrodes was reduced from 10 to 6 cm. A maximum volumetric power density of 135.21 mW/m3 has been attained with a 6 cm electrode distance with the accomplished COD reduction of 93.21%. The presence of biofilm on the anode has been visualized through the SEM images. The higher COD concentration of wastewater and the fed-batch operation resulted in increased power output and wastewater treatment efficiency. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10934529
Volume :
58
Issue :
1
Database :
Academic Search Index
Journal :
Journal of Environmental Science & Health. Part A. Toxic/Hazardous Substances & Environmental Engineering
Publication Type :
Academic Journal
Accession number :
162432178
Full Text :
https://doi.org/10.1080/10934529.2023.2168998