Back to Search Start Over

Staying in situ or shifting range under ongoing climate change: A case of an endemic herb in the Himalaya‐Hengduan Mountains across elevational gradients.

Authors :
Lin, Nan
Liu, Qun
Landis, Jacob B.
Rana, Hum Kala
Li, Zhimin
Wang, Hengchang
Sun, Hang
Deng, Tao
Source :
Diversity & Distributions. Apr2023, Vol. 29 Issue 4, p524-542. 19p. 1 Diagram, 1 Chart, 1 Graph, 2 Maps.
Publication Year :
2023

Abstract

Aim: How species respond to ongoing climate change has been a hot research topic, especially with the controversy in shifting range (movement) or persisting in local habitat (in situ) as the primary response. Assessing the relative roles of range shifts, phenotypic plasticity and genetic adaptation helps us predict the evolutionary fate of species. We aim to explore the evolutionary strategies of plants under climate change from a keystone herb in alpine ecosystems, Mirabilis himalaica, along its elevational gradient. Location: Himalaya‐Hengduan Mountains, China. Methods: We combined evidence from population genomics and ecological data in both space and time to investigate the state of "staying" or "moving". We identified migration events by assessing historical and contemporary gene flow and changes in species distribution. Morphological variation was compared by measuring five traits using specimen data. Moreover, we explored climate‐driven genetic variation and local selection regimes acting on populations in the alpine landscape along an elevational gradient. Results: Our results argue that staying in situ by morphological variation and local genetic evolution rather than range shifting plays an important role in M. himalaica response to climate change. We first found trace evidence of upward or climatic‐driven shifting along an elevational gradient, although asymmetric gene flow was restricted within microenvironments of mid‐elevational populations. Furthermore, morphological variation comparisons revealed clinal variation, as resource allocation showed a declining pattern in vegetative growth but increased reproductive growth with increasing elevation. Outlier tests and environment association analyses indicated adaptative loci primarily related to thermal‐driven selection and continuous adaptations to high elevation in the Himalaya‐Hengduan Mountains. Main Conclusions: Our findings show M. himalaica may persist in local habitats rather than shifting range under climate change, exhibiting a low risk of genomic vulnerability in current habitats. This study has important implications in improving our understanding of the evolutionary response in alpine plants to climate change. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
13669516
Volume :
29
Issue :
4
Database :
Academic Search Index
Journal :
Diversity & Distributions
Publication Type :
Academic Journal
Accession number :
162417337
Full Text :
https://doi.org/10.1111/ddi.13676