Back to Search Start Over

Benchmarking machine learning robustness in Covid-19 genome sequence classification.

Authors :
Ali, Sarwan
Sahoo, Bikram
Zelikovsky, Alexander
Chen, Pin-Yu
Patterson, Murray
Source :
Scientific Reports. 3/13/2023, Vol. 13 Issue 1, p1-17. 17p.
Publication Year :
2023

Abstract

The rapid spread of the COVID-19 pandemic has resulted in an unprecedented amount of sequence data of the SARS-CoV-2 genome—millions of sequences and counting. This amount of data, while being orders of magnitude beyond the capacity of traditional approaches to understanding the diversity, dynamics, and evolution of viruses, is nonetheless a rich resource for machine learning (ML) approaches as alternatives for extracting such important information from these data. It is of hence utmost importance to design a framework for testing and benchmarking the robustness of these ML models. This paper makes the first effort (to our knowledge) to benchmark the robustness of ML models by simulating biological sequences with errors. In this paper, we introduce several ways to perturb SARS-CoV-2 genome sequences to mimic the error profiles of common sequencing platforms such as Illumina and PacBio. We show from experiments on a wide array of ML models that some simulation-based approaches with different perturbation budgets are more robust (and accurate) than others for specific embedding methods to certain noise simulations on the input sequences. Our benchmarking framework may assist researchers in properly assessing different ML models and help them understand the behavior of the SARS-CoV-2 virus or avoid possible future pandemics. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20452322
Volume :
13
Issue :
1
Database :
Academic Search Index
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
162413622
Full Text :
https://doi.org/10.1038/s41598-023-31368-3