Back to Search Start Over

IL-33 via PKCμ/PRKD1 Mediated α-Catenin Phosphorylation Regulates Endothelial Cell-Barrier Integrity and Ischemia-Induced Vascular Leakage.

Authors :
Sharma, Deepti
Kaur, Geetika
Bisen, Shivantika
Sharma, Anamika
Ibrahim, Ahmed S.
Singh, Nikhlesh K.
Source :
Cells (2073-4409). Mar2023, Vol. 12 Issue 5, p703. 18p.
Publication Year :
2023

Abstract

Angiogenesis, neovascularization, and vascular remodeling are highly dynamic processes, where endothelial cell–cell adhesion within the vessel wall controls a range of physiological processes, such as growth, integrity, and barrier function. The cadherin–catenin adhesion complex is a key contributor to inner blood–retinal barrier (iBRB) integrity and dynamic cell movements. However, the pre-eminent role of cadherins and their associated catenins in iBRB structure and function is not fully understood. Using a murine model of oxygen-induced retinopathy (OIR) and human retinal microvascular endothelial cells (HRMVECs), we try to understand the significance of IL-33 on retinal endothelial barrier disruption, leading to abnormal angiogenesis and enhanced vascular permeability. Using electric cell-substrate impedance sensing (ECIS) analysis and FITC-dextran permeability assay, we observed that IL-33 at a 20 ng/mL concentration induced endothelial-barrier disruption in HRMVECs. The adherens junction (AJs) proteins play a prominent role in the selective diffusion of molecules from the blood to the retina and in maintaining retinal homeostasis. Therefore, we looked for the involvement of adherens junction proteins in IL-33-mediated endothelial dysfunction. We observed that IL-33 induces α-catenin phosphorylation at serine/threonine (Ser/Thr) residues in HRMVECs. Furthermore, mass-spectroscopy (MS) analysis revealed that IL-33 induces the phosphorylation of α-catenin at Thr654 residue in HRMVECs. We also observed that PKCμ/PRKD1-p38 MAPK signaling regulates IL-33-induced α-catenin phosphorylation and retinal endothelial cell-barrier integrity. Our OIR studies revealed that genetic deletion of IL-33 resulted in reduced vascular leakage in the hypoxic retina. We also observed that the genetic deletion of IL-33 reduced OIR-induced PKCμ/PRKD1-p38 MAPK-α-catenin signaling in the hypoxic retina. Therefore, we conclude that IL-33-induced PKCμ/PRKD1-p38 MAPK-α-catenin signaling plays a significant role in endothelial permeability and iBRB integrity. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20734409
Volume :
12
Issue :
5
Database :
Academic Search Index
Journal :
Cells (2073-4409)
Publication Type :
Academic Journal
Accession number :
162348267
Full Text :
https://doi.org/10.3390/cells12050703