Back to Search Start Over

Enhancing Clinical Data Analysis by Explaining Interaction Effects between Covariates in Deep Neural Network Models.

Authors :
Shao, Yijun
Ahmed, Ali
Zamrini, Edward Y.
Cheng, Yan
Goulet, Joseph L.
Zeng-Treitler, Qing
Source :
Journal of Personalized Medicine. Feb2023, Vol. 13 Issue 2, p217. 16p.
Publication Year :
2023

Abstract

Deep neural network (DNN) is a powerful technology that is being utilized by a growing number and range of research projects, including disease risk prediction models. One of the key strengths of DNN is its ability to model non-linear relationships, which include covariate interactions. We developed a novel method called interaction scores for measuring the covariate interactions captured by DNN models. As the method is model-agnostic, it can also be applied to other types of machine learning models. It is designed to be a generalization of the coefficient of the interaction term in a logistic regression; hence, its values are easily interpretable. The interaction score can be calculated at both an individual level and population level. The individual-level score provides an individualized explanation for covariate interactions. We applied this method to two simulated datasets and a real-world clinical dataset on Alzheimer's disease and related dementia (ADRD). We also applied two existing interaction measurement methods to those datasets for comparison. The results on the simulated datasets showed that the interaction score method can explain the underlying interaction effects, there are strong correlations between the population-level interaction scores and the ground truth values, and the individual-level interaction scores vary when the interaction was designed to be non-uniform. Another validation of our new method is that the interactions discovered from the ADRD data included both known and novel relationships. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20754426
Volume :
13
Issue :
2
Database :
Academic Search Index
Journal :
Journal of Personalized Medicine
Publication Type :
Academic Journal
Accession number :
162133750
Full Text :
https://doi.org/10.3390/jpm13020217