Back to Search
Start Over
Colorimetric and photothermal dual-mode lateral flow immunoassay based on Au-Fe3O4 multifunctional nanoparticles for detection of Salmonella typhimurium.
- Source :
-
Microchimica Acta . Feb2023, Vol. 190 Issue 2, p1-10. 10p. - Publication Year :
- 2023
-
Abstract
- Au-Fe3O4 multifunctional nanoparticles (NPs) were synthesized and integrated with lateral flow immunoassay (LFIA) for dual-mode detection of Salmonella typhimurium. The Au-Fe3O4 NPs not only combined excellent local surface plasmon resonance characteristics and superparamagnetic properties, but also exhibited good photothermal effect. In the detection, antibody-conjugated Au-Fe3O4 NPs first captured S. typhimurium from complex matrix, which was then loaded on the LFIA strip and trapped by the T-line. By observing the color bands with the naked eyes, qualitative detection was performed free of instrument. By measuring the photothermal signal, quantification was achieved with a portable infrared thermal camera. The introduction of magnetic separation achieved the enrichment and purification of target bacteria, thus enhancing the detection sensitivity and reducing interference. This dual-mode LFIA achieved a visual detection limit of 5 × 105 CFU/mL and a photothermal detection limit of 5 × 104 CFU/mL. Compared with traditional Au-based LFIA, this dual-mode LFIA increased the detection sensitivity by 2 orders of magnitude and could be directly applied to unprocessed milk sample. Besides, this dual-mode LFIA showed good reproducibility and specificity. The intra-assay and inter-assay variation coefficients were 3.0% and 7.9%, and with this dual-mode LFIA, other bacteria hardly produced distinguishable signals. Thus, the Au-Fe3O4 NPs-based LFIA has potential to increase the efficiency of pandemic prevention and control. Au-Fe3O4 nanoparticle proved to be a promising alternative reporter for LFIA, achieving multifunctions: target purification, target enrichment, visual qualitation, and instrumental quantification, which improved the limitations of traditional LFIA. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 00263672
- Volume :
- 190
- Issue :
- 2
- Database :
- Academic Search Index
- Journal :
- Microchimica Acta
- Publication Type :
- Academic Journal
- Accession number :
- 162012780
- Full Text :
- https://doi.org/10.1007/s00604-023-05645-x