Back to Search
Start Over
Tuning the surface morphologies of ZnO nanofilms for enhanced sensitivity and selectivity of CO2 gas sensor.
- Source :
-
Applied Physics A: Materials Science & Processing . Feb2023, Vol. 129 Issue 2, p1-18. 18p. 1 Black and White Photograph, 2 Diagrams, 6 Charts, 9 Graphs. - Publication Year :
- 2023
-
Abstract
- In this work, ZnO has been synthesized with a variety of nanomorphologies, including nanorods (NRs), nanodiscs (NDs), and nanorods/nanodiscs (NRs/NDs), to enhance CO2 gas detection at room temperature. The ZnO nanostructures were made by combining the successive ionic layer adsorption and reaction (SILAR) strategy and the chemical bath deposition (CBD) method. The time of CBD varied from 6 to 12 h. Several techniques, including X-ray diffraction (XRD) spectroscopy, energy-dispersive X-ray (EDAX) spectrometry, optical spectrophotometer, and field emission scanning electron microscopy (FE-SEM), were used to investigate the manufactured ZnO nanostructures. The FE-SEM demonstrates that by increasing the deposition period of CBD from 6 to 12 h, the shape of ZnO nanostructures changed from NRs/NDs to NDs. According to the XRD, all ZnO nanostructured samples exhibit hexagonal wurtzite structures with (002) preferred orientation. Additionally, the crystallite size along orientation (002) increases from 63 to 65 nm as the deposition duration increases from 6 to 12 h. The bandgap of ZnO was reduced from 3.62 to 3.31 eV. When the deposition time is increased from 6 to 12 h, the sensitivity increases from 8.46 to 28.7%, the detection limit rises from 4.65 to 9.95 SCCM, and the limit of quantification rises from 15.52 to 33.16 SCCM. Moreover, the ZnO @ 12 h sensors has excellent selectivity as well since it reacts to CO2 with a higher response sensitivity than it does to other gases like hydrogen and ammonia. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 09478396
- Volume :
- 129
- Issue :
- 2
- Database :
- Academic Search Index
- Journal :
- Applied Physics A: Materials Science & Processing
- Publication Type :
- Academic Journal
- Accession number :
- 162012544
- Full Text :
- https://doi.org/10.1007/s00339-023-06387-6