Back to Search
Start Over
Recombinant Peptide Production Softens Escherichia coli Cells and Increases Their Size during C-Limited Fed-Batch Cultivation.
- Source :
-
International Journal of Molecular Sciences . Feb2023, Vol. 24 Issue 3, p2641. 15p. - Publication Year :
- 2023
-
Abstract
- Stress-associated changes in the mechanical properties at the single-cell level of Escherichia coli (E. coli) cultures in bioreactors are still poorly investigated. In our study, we compared peptide-producing and non-producing BL21(DE3) cells in a fed-batch cultivation with tightly controlled process parameters. The cell growth, peptide content, and cell lysis were analysed, and changes in the mechanical properties were investigated using atomic force microscopy. Recombinant-tagged somatostatin-28 was expressed as soluble up to 197 ± 11 mg g−1. The length of both cultivated strains increased throughout the cultivation by up to 17.6%, with nearly constant diameters. The peptide-producing cells were significantly softer than the non-producers throughout the cultivation, and respective Young's moduli decreased by up to 57% over time. A minimum Young's modulus of 1.6 MPa was observed after 23 h of the fed-batch. Furthermore, an analysis of the viscoelastic properties revealed that peptide-producing BL21(DE3) appeared more fluid-like and softer than the non-producing reference. For the first time, we provide evidence that the physical properties (i.e., the mechanical properties) on the single-cell level are significantly influenced by the metabolic burden imposed by the recombinant peptide expression and C-limitation in bioreactors. [ABSTRACT FROM AUTHOR]
- Subjects :
- *PEPTIDES
*ESCHERICHIA coli
*CELL size
*ATOMIC force microscopy
*YOUNG'S modulus
Subjects
Details
- Language :
- English
- ISSN :
- 16616596
- Volume :
- 24
- Issue :
- 3
- Database :
- Academic Search Index
- Journal :
- International Journal of Molecular Sciences
- Publication Type :
- Academic Journal
- Accession number :
- 161860907
- Full Text :
- https://doi.org/10.3390/ijms24032641