Back to Search Start Over

Kinetics of Oxygen Reduction Reaction of Polymer-Coated MWCNT-Supported Pt-Based Electrocatalysts for High-Temperature PEM Fuel Cell.

Authors :
Haque, Md Ahsanul
Rahman, Md Mahbubur
Islam, Faridul
Sulong, Abu Bakar
Shyuan, Loh Kee
Rosli, Ros emilia
Chakraborty, Ashok Kumar
Haider, Julfikar
Source :
Energies (19961073). Feb2023, Vol. 16 Issue 3, p1537. 17p.
Publication Year :
2023

Abstract

Sluggish oxygen reduction reaction (ORR) of electrodes is one of the main challenges in fuel cell systems. This study explored the kinetics of the ORR reaction mechanism, which enables us to understand clearly the electrochemical activity of the electrode. In this research, electrocatalysts were synthesized from platinum (Pt) catalyst with multi-walled carbon nanotubes (MWCNTs) coated by three polymers (polybenzimidazole (PBI), sulfonated tetrafluoroethylene (Nafion), and polytetrafluoroethylene (PTFE)) as the supporting materials by the polyol method while hexachloroplatinic acid (H2PtCl6) was used as a catalyst precursor. The oxygen reduction current of the synthesized electrocatalysts increased that endorsed by linear sweep voltammetry (LSV) curves while increasing the rotation rates of the disk electrode. Additionally, MWCNT-PBI-Pt was attributed to the maximum oxygen reduction current densities at −1.45 mA/cm2 while the minimum oxygen reduction current densities of MWCNT-Pt were obtained at −0.96 mAcm2. However, the ring current densities increased steadily from potential 0.6 V to 0.0 V due to their encounter with the hydrogen peroxide species generated by the oxygen reduction reactions. The kinetic limiting current densities (JK) increased gradually with the applied potential from 1.0 V to 0.0 V. It recommends that the ORR consists of a single step that refers to the first-order reaction. In addition, modified MWCNT-supported Pt electrocatalysts exhibited high electrochemically active surface areas (ECSA) at 24.31 m2/g of MWCNT-PBI-Pt, 22.48 m2/g of MWCNT-Nafion-Pt, and 20.85 m2/g of MWCNT-PTFE-Pt, compared to pristine MWCNT-Pt (17.66 m2/g). Therefore, it can be concluded that the additional ionomer phase conducting the ionic species to oxygen reduction in the catalyst layer could be favorable for the ORR reaction. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19961073
Volume :
16
Issue :
3
Database :
Academic Search Index
Journal :
Energies (19961073)
Publication Type :
Academic Journal
Accession number :
161820485
Full Text :
https://doi.org/10.3390/en16031537