Back to Search Start Over

Structural basis of V-ATPase VO region assembly by Vma12p, 21p, and 22p.

Authors :
Hanlin Wang
Bueler, Stephanie A.
Rubinstein, John L.
Source :
Proceedings of the National Academy of Sciences of the United States of America. 2/7/2023, Vol. 120 Issue 6, p1-9. 22p.
Publication Year :
2023

Abstract

Vacuolar-type adenosine triphosphatases (V-ATPases) are rotary proton pumps that acidify specific intracellular compartments in almost all eukaryotic cells. These multi-subunit enzymes consist of a soluble catalytic V1 region and a membrane-embedded proton-translocating VO region. VO is assembled in the endoplasmic reticulum (ER) membrane, and V1 is assembled in the cytosol. However, V1 binds VO only after VO is transported to the Golgi membrane, thereby preventing acidification of the ER. We isolated VO complexes and subcomplexes from Saccharomyces cerevisiae bound to V-ATPase assembly factors Vma12p, Vma21p, and Vma22p. Electron cryomicroscopy shows how the Vma12-22p complex recruits subunits a, e, and f to the rotor ring of VO while blocking premature binding of V1. Vma21p, which contains an ER-retrieval motif, binds the VO:Vma12-22p complex, "mature" VO, and a complex that appears to contain a ring of loosely packed rotor subunits and the proteins YAR027W and YAR028W The structures suggest that Vma21p binds assembly intermediates that contain a rotor ring and that activation of proton pumping following assembly of V1 with VO removes Vma21p, allowing V-ATPase to remain in the Golgi. Together, these structures show how Vma12-22p and Vma21p function in V-ATPase assembly and quality control, ensuring the enzyme acidifies only its intended cellular targets. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00278424
Volume :
120
Issue :
6
Database :
Academic Search Index
Journal :
Proceedings of the National Academy of Sciences of the United States of America
Publication Type :
Academic Journal
Accession number :
161733042
Full Text :
https://doi.org/10.1073/pnas.2217181120