Back to Search
Start Over
Distinct effects of α-linolenic acid and docosahexaenoic acid on the expression of genes related to cholesterol metabolism and the response to infection in THP-1 monocytes and immune cells of obese humans.
- Source :
-
Biomedicine & Pharmacotherapy . Mar2023, Vol. 159, pN.PAG-N.PAG. 1p. - Publication Year :
- 2023
-
Abstract
- Monocytes play a large role in chronic inflammatory conditions such as obesity, atherosclerosis and infection. Marine-derived omega-3 fatty acids such as docosahexaenoic acid (DHA) beneficially alter immune function and attenuate chronic inflammation in part by modifying gene expression. Comparisons with plant-derived omega-3 α-linolenic acid (ALA) on immune cell gene expression and function are limited. Transcriptome analysis was performed on THP-1 human monocytes treated with ALA, DHA or vehicle for 48 hr using fold change analysis, principal component analysis (PCA), partial least squares-discriminant analysis (PLS-DA), variable importance analysis (VIP), and ingenuity pathway analysis (IPA). Candidate genes were validated by qPCR. Functional assays evaluated the transcriptomic predictions. Expression of candidate transcripts identified in THP-1 cells were examined in PBMC from clinical trial (OXBIO; NCT 03583281) participants consuming ALA- or DHA-rich oil supplements. ALA and DHA-treated monocytes presented distinct transcriptomic profiles as per VIP and PLS-DA. Both fatty acids were predicted to reduce cellular cholesterol content, while ALA would uniquely increase response to infection and chemotactic signals. Functional assays revealed ALA and DHA decreased cholesterol content. DHA significantly decreased the response to infection and chemotaxis, but ALA had no effect. Candidate transcripts responded similarly in PBMC from n-3 PUFA supplemented women with obesity. ALA and DHA differentially alter the transcription profiles and functions associated with the response to infection, chemotaxis, and cholesterol metabolism in mononuclear immune cells. Thus, they may uniquely affect related disease processes contributing to obesity, atherosclerosis, and the response to infection. [Display omitted] • ALA and DHA treatment decrease cholesterol metabolism genes in THP-1 monocytes. • ALA increases expression of genes related to chemotaxis and response to infection. • OXBIO participants Immune cells have similar transcription patterns as THP-1 cells. • ALA and DHA uniquely affect processes associated with obesity and atherosclerosis. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 07533322
- Volume :
- 159
- Database :
- Academic Search Index
- Journal :
- Biomedicine & Pharmacotherapy
- Publication Type :
- Academic Journal
- Accession number :
- 161662054
- Full Text :
- https://doi.org/10.1016/j.biopha.2022.114167