Back to Search Start Over

Techno-economic-environmental assessment and performance comparison of a building distributed multi-energy system under various operation strategies.

Authors :
Ge, Yongkai
Ma, Yue
Wang, Qingrui
Yang, Qing
Xing, Lu
Ba, Shusong
Source :
Renewable Energy: An International Journal. Mar2023, Vol. 204, p685-696. 12p.
Publication Year :
2023

Abstract

The distributed energy system (DES) is a promising technology that could enable decarbonization in the building sector. Comprehensive DES system assessment from a holistic perspective is crucial for system design, operation strategy selection, and performance optimization. This paper proposes a techno-economic-environmental integrated assessment model for comprehensive system evaluation. The DES configuration mainly includes a photovoltaic panel, ground source heat pump, gas turbine, absorption heat pump, and thermal storage tank. The system is simulated under three operation strategies with MATLAB/Simulink, which are following thermal load (FTL), following electric load (FEL), and following electric load with thermal storage (FELTS). Entropy-TOPSIS method is used to evaluate the DES's techno-economic-environmental performance under various operation strategies. The results indicate that the DES' primary energy efficiency ratio under the three operation strategies of FTL, FEL and FELTS are 51.49%, 86.78%, and 125.69%, respectively. The dynamic annual values are 1.05 × 10 6 CNY, 7.23 × 10 5 CNY, and 5.94 × 10 5 CNY, respectively. The total greenhouse gas emissions are 36.2 kgCO2eq/( m 2 ∙ a) , 22.8 kgCO2eq/( m 2 ∙ a) , and 16.4 kgCO2eq/( m 2 ∙ a) , respectively. The entropy-TOPSIS analysis results showed that under FELTS operation strategy, DES performs the best; it has the best indicators for technical and environmental evaluation. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
09601481
Volume :
204
Database :
Academic Search Index
Journal :
Renewable Energy: An International Journal
Publication Type :
Academic Journal
Accession number :
161628579
Full Text :
https://doi.org/10.1016/j.renene.2022.12.127