Back to Search Start Over

TiO 2 /SnO 2 Bilayer Electron Transport Layer for High Efficiency Perovskite Solar Cells.

Authors :
Sun, Xiaolin
Li, Lu
Shen, Shanshan
Wang, Fang
Source :
Nanomaterials (2079-4991). Jan2023, Vol. 13 Issue 2, p249. 10p.
Publication Year :
2023

Abstract

The electron transport layer (ETL) has been extensively investigated as one of the important components to construct high-performance perovskite solar cells (PSCs). Among them, inorganic semiconducting metal oxides such as titanium dioxide (TiO2), and tin oxide (SnO2) present great advantages in both fabrication and efficiency. However, the surface defects and uniformity are still concerns for high performance devices. Here, we demonstrated a bilayer ETL architecture PSC in which the ETL is composed of a chemical-bath-deposition-based TiO2 thin layer and a spin-coating-based SnO2 thin layer. Such a bilayer-structure ETL can not only produce a larger grain size of PSCs, but also provide a higher current density and a reduced hysteresis. Compared to the mono-ETL PCSs with a low efficiency of 16.16%, the bilayer ETL device features a higher efficiency of 17.64%, accomplished with an open-circuit voltage of 1.041 V, short-circuit current density of 22.58 mA/cm2, and a filling factor of 75.0%, respectively. These results highlight the unique potential of TiO2/SnO2 combined bilayer ETL architecture, paving a new way to fabricate high-performance and low-hysteresis PSCs. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20794991
Volume :
13
Issue :
2
Database :
Academic Search Index
Journal :
Nanomaterials (2079-4991)
Publication Type :
Academic Journal
Accession number :
161564785
Full Text :
https://doi.org/10.3390/nano13020249