Back to Search
Start Over
Non-negative Ollivier curvature on graphs, reverse Poincaré inequality, Buser inequality, Liouville property, Harnack inequality and eigenvalue estimates.
- Source :
-
Journal de Mathematiques Pures et Appliquees . Feb2023, Vol. 170, p231-257. 27p. - Publication Year :
- 2023
-
Abstract
- We prove that for combinatorial graphs with non-negative Ollivier curvature, one has ‖ P t μ − P t ν ‖ 1 ≤ W 1 (μ , ν) t for all probability measures μ , ν where P t is the heat semigroup and W 1 is the ℓ 1 -Wasserstein distance. This turns out to be an equivalent formulation of a version of reverse Poincaré inequality. Furthermore, this estimate allows us to prove Buser inequality, Liouville property and the eigenvalue estimate λ 1 ≥ log (2) / diam 2. [ABSTRACT FROM AUTHOR]
- Subjects :
- *CURVATURE
*EIGENVALUES
*PROBABILITY measures
*HEAT equation
Subjects
Details
- Language :
- English
- ISSN :
- 00217824
- Volume :
- 170
- Database :
- Academic Search Index
- Journal :
- Journal de Mathematiques Pures et Appliquees
- Publication Type :
- Academic Journal
- Accession number :
- 161276703
- Full Text :
- https://doi.org/10.1016/j.matpur.2022.12.007