Back to Search Start Over

N-glycosylation of mannose receptor (CD206) regulates glycan binding by C-type lectin domains.

Authors :
Stavenhagen, Kathrin
Mehta, Akul Y.
Laan, Lisa
ChaoGao
Heimburg-Molinaro, Jamie
van Die, Irma
Cummings, Richard D.
Source :
Journal of Biological Chemistry. Dec2022, Vol. 298 Issue 12, p1-12. 12p.
Publication Year :
2022

Abstract

The macrophage mannose receptor (MR, CD206) is a transmembrane endocytic lectin receptor, expressed in selected immune and endothelial cells, and is involved in immunity and maintaining homeostasis. Eight of the ten extracellular do-mains of the MR are C-type lectin domains (CTLDs) which mediate the binding of mannose, fucose, and GlcNAc in a calcium-dependent manner. Previous studies indicated that self-glycosylation of MR regulates its glycan binding. To further explore this structure-function relationship, we studied herein a recombinant version of mouse MR CTLD4-7 fused to human Fc-portion of IgG (MR-Fc). The construct was expressed in different glycosylation-mutant cell lines to study the influence of differential glycosylation on receptor glycan- binding properties. We conducted site-specific N- and O-glycosylation analysis and glycosylation site characterization using mass spectrometry by which several novel O-glycosylation sites were identified in mouse MR and confirmed in human full-length MR. This information guided experiments evaluating the receptor functionality by glycan microarray analysis in combination with glycan-modifying enzymes. Treatment of active MR-Fc with combinations of exoglycosidases, including neuraminidase and galactosidases, resulted in the loss of trans-binding (binding of MR CTLDs to non-MR glycans), due to unmasking of terminal, nonreducing GlcNAc in N-glycans of the MR CTLDs. Regalactosylation of N-glycans rescues mannose binding by MR-Fc. Our results indicate that glycans within the MR CTLDs act as a regulatory switch by masking and unmasking self-ligands, including terminal, nonreducing GlcNAc in N-glycans, which could control MR activity in a tissue- and cell-specific manner or which potentially affect bacterial pathogenesis in an immunomodulatory fashion. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00219258
Volume :
298
Issue :
12
Database :
Academic Search Index
Journal :
Journal of Biological Chemistry
Publication Type :
Academic Journal
Accession number :
161106822
Full Text :
https://doi.org/10.1016/j.jbc.2022.102591