Back to Search
Start Over
Melt Temperature Estimation by Machine Learning Model Based on Energy Flow in Injection Molding.
- Source :
-
Polymers (20734360) . Dec2022, Vol. 14 Issue 24, p5548. 17p. - Publication Year :
- 2022
-
Abstract
- Highly reliable and accurate melt temperature measurements in the barrel are necessary for stable injection molding. Conventional sheath-type thermocouples are insufficiently responsive for measuring melt temperatures during molding. Herein, machine learning models were built to predict the melt temperature after plasticizing. To supply reliably labeled melt temperatures to the models, an optimized temperature sensor was developed. Based on measured high-quality temperature data, three machine learning models were built. The first model accepted process setting parameters as inputs and was built for comparisons with previous models. The second model accepted additional measured process parameters related to material energy flow during plasticizing. Finally, the third model included the specific heat and part weights reflecting the material energy, in addition to the features of the second model. Thus, the third model outperformed the others, and its loss decreased by more than 70%. Meanwhile, the coefficient of determination increased by about 0.5 more than those of the first model. To reduce the dataset size for new materials, a transfer learning model was built using the third model, which showed a high prediction performance and reliability with a smaller dataset. Additionally, the reliability of the input features to the machine learning models were evaluated by shapley additive explanations (SHAP) analysis. [ABSTRACT FROM AUTHOR]
- Subjects :
- *INJECTION molding
*MACHINE learning
*SPECIFIC heat
*MELTING
*TEMPERATURE
Subjects
Details
- Language :
- English
- ISSN :
- 20734360
- Volume :
- 14
- Issue :
- 24
- Database :
- Academic Search Index
- Journal :
- Polymers (20734360)
- Publication Type :
- Academic Journal
- Accession number :
- 161065131
- Full Text :
- https://doi.org/10.3390/polym14245548