Back to Search
Start Over
Modified Regression Estimators for Improving Mean Estimation-Poisson Regression Approach.
- Source :
-
Pakistan Journal of Statistics & Operation Research . 2022, Vol. 18 Issue 4, p985-994. 10p. - Publication Year :
- 2022
-
Abstract
- In this article, a class of Poisson-regression based estimators has been proposed for estimating the finite population mean in simple random sampling without replacement (SRSWOR). The Poisson-regression model is the most common method used to model count responses in many studies. The expression for bias and mean square error (MSE) of proposed class of estimators are obtained up to first order of approximation. The proposed estimators have been compared theoretically with the existing estimators, and the condition under which the proposed class of estimators perform better than existing estimators have been obtained. Two real data sets are considered to assess the performance of the proposed estimators. Numerical findings confirms that the proposed estimators dominate over the existing estimators such as Koc (2021) and Usman et al. (2021) in terms of mean squared error. [ABSTRACT FROM AUTHOR]
- Subjects :
- *STATISTICAL sampling
*POISSON regression
Subjects
Details
- Language :
- English
- ISSN :
- 18162711
- Volume :
- 18
- Issue :
- 4
- Database :
- Academic Search Index
- Journal :
- Pakistan Journal of Statistics & Operation Research
- Publication Type :
- Academic Journal
- Accession number :
- 161047614
- Full Text :
- https://doi.org/10.18187/pjsor.v18i4.3955