Back to Search Start Over

Fruquintinib/HMPL-013 ameliorates cognitive impairments and pathology in a mouse model of cerebral amyloid angiopathy (CAA).

Authors :
Zhou, Guijuan
Xiang, Tao
Xu, Yan
He, Bing
Wu, Lin
Zhu, Guanghua
Xie, Juan
Yao, Lan
Xiao, Zijian
Source :
European Journal of Pharmacology. Jan2023, Vol. 939, pN.PAG-N.PAG. 1p.
Publication Year :
2023

Abstract

Cerebral amyloid angiopathy (CAA) is characterized by the cerebrovascular amyloid-β (Aβ) accumulation, and always accompanied by Alzheimer's disease (AD). The mechanisms revealing CAA pathogenesis are still unclear, and it is challenging to develop an efficient therapeutic strategy for its treatment. Vascular endothelial growth factor (VEGF) and its receptors including VEGFR-1,-2,-3 activation are involved in Aβ processing, and modulate numerous cellular events associated with central nervous system (CNS) diseases. In the present study, we attempted to explore the regulatory function of fruquintinib (also named as HMPL-013), a highly selective inhibitor of VEGFR-1,-2,-3 tyrosine kinases, on CAA progression in Tg-SwDI mice. Here, we found that HMPL-013-rich diet consumption for 12 months significantly improved the behavioral performances and cerebral blood flow (CBF) of Tg-SwDI mice compared with the vehicle group. Importantly, HMPL-013 administration considerably reduced Aβ 1-40 and Aβ 1-42 burden in cortex and hippocampus of Tg-SwDI mice through regulating Aβ metabolism process. Congo red staining confirmed Aβ deposition in vessel walls, reflecting CAA formation, which was, however, strongly ameliorated after HMPL-013 treatment. Neuron death, aberrant glial activation and pro-inflammatory response in brain tissues of Tg-SwDI mice were dramatically alleviated after HMPL-013 consumption. More studies showed that the protective effects of HMPL-013 against CAA might be partially attributed to its regulation on the expression of genes associated with blood vasculature. Intriguingly, VEGF and phosphorylated VEGFR-1,-2 protein expression levels were remarkably decreased by HMPL-013 in cortex and hippocampus of Tg-SwDI mice, which were validated in HMPL-013-treated brain vascular endothelial cells (BVECs) under hypoxia. Finally, we found that VEGF-induced human umbilical vein endothelial cells (HUVEC) proliferation and tube formation were strongly abolished upon HMPL-013 exposure. Collectively, all these findings demonstrated that oral administration of HMPL-013 had therapeutic potential against CAA by reducing Aβ deposition, inflammation and neuron death via suppressing VEGF/VEGFR-1,-2 signaling. [Display omitted] • HMPL-013 mitigates impaired behavioral performance in Tg-SwDI mice with CAA. • HMPL-013 consumption reduces Aβ accumulation in Tg-SwDI mice. • HMPL-013 ameliorates Aβ metabolism in vitro and in vivo via suppression of ROS and inflammation. • HMPL-013 improves neuron survival in Tg-SwDI mice. • HMPL-013 reduces glial cell activation in Tg-SwDI mice. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00142999
Volume :
939
Database :
Academic Search Index
Journal :
European Journal of Pharmacology
Publication Type :
Academic Journal
Accession number :
161011242
Full Text :
https://doi.org/10.1016/j.ejphar.2022.175446