Back to Search Start Over

Revisiting quorum sensing: Discovery of additional chemical and biological functions for 3-oxo-N-acylhomoserine lactones.

Authors :
Kaufmann, Gunnar F.
Sartorio, Rafaella
Lee, Sang-Hyeup
Rogers, Claude J.
Meijler, Michael M.
Moss, Jason A.
Clapham, Bruce
Brogan, Andrew P.
Dickerson, Tobin J.
Janda, Kim D.
Source :
Proceedings of the National Academy of Sciences of the United States of America. 1/11/2005, Vol. 102 Issue 2, p309-314. 6p.
Publication Year :
2005

Abstract

Bacteria use small diffusible molecules to exchange information in a process called quorum sensing An important class of autoinducers used by Gram-negative bacteria is the family of N-acylhomoserine lactones. Here, we report the discovery of a previously undescribed nonenzymatically formed product from N-(3-oxodo- decanoyl)-L-homoserine lactone; both the N-acylhomoserine and its novel tetramic acid degradation product, 3-(1-hydroxydecylidene)-5-(2-hydroxyethyl)pyrrolidine-2,4-dione, are potent antibacterial agents. Bactericidal activity was observed against all tested Gram-positive bacterial strains, whereas no toxicity was seen against Gram-negative bacteria. We propose that Pseudomonas aeruginosa utilizes this tetramic acid as an interference strategy to preclude encroachment by competing bacteria. Additionally, we have discovered that this tetramic acid binds iron with comparable affinity to known bacterial siderophores, possibly providing an unrecognized mechanism for iron solubilization. These findings merit new attention such that other previously identified autoinducers be reevaluated for additional biological functions. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00278424
Volume :
102
Issue :
2
Database :
Academic Search Index
Journal :
Proceedings of the National Academy of Sciences of the United States of America
Publication Type :
Academic Journal
Accession number :
16097394
Full Text :
https://doi.org/10.1073/pnas.0408639102