Back to Search Start Over

Flexible, high-temperature-resistant, highly conductive, and porous siloxane-based single-ion conducting electrolyte membranes for safe and dendrite-free lithium-metal batteries.

Authors :
Hu, Zhenyuan
Zhang, Yunfeng
Fan, Weizhen
Li, Xianwei
Huo, Shikang
Jing, Xiao
Bao, Wei
Zhang, Yi
Cheng, Hansong
Source :
Journal of Membrane Science. Feb2023, Vol. 668, pN.PAG-N.PAG. 1p.
Publication Year :
2023

Abstract

High-temperature-resistant polymer electrolyte membranes with satisfactory Li-ion transference number (t L i + ) and ionic conductivity is desirable for the application in safe and dendrite-proof lithium metal batteries (LMBs). In this study, siloxane-based single-ion conducting polymer electrolyte (SIPE) membranes with high porosity are fabricated by in-situ sol-gel and non-solvent induced phase separation methods. Benefiting from the well-designed three-dimensional interpenetrating polymer network, the thermal and dimensional ability of the as-developed membranes are significantly enhanced. In addition, the porous structure enabling a high liquid electrolyte uptake (468.6%) combines with the intrinsic nature of SIPE for the membranes, giving rise to much higher ionic conductivity of 1.72 × 10−3 S cm−1 and t L i + of 0.72 compared to commercial polypropylene (PP) separators (3.56 × 10−4 S cm−1 and 0.33) at 25 °C. Such excellent electrochemical properties are beneficial to inhibiting the Li dendrites and impeding short-circuiting of batteries. As expected, the Li/Li symmetrical cells show a stable galvanostatic Li plating/stripping cycling performance with a low overpotential of more than 400 h at 2 mA cm−2. Remarkably, the LiFePO 4 /Li batteries using the membranes exhibit impressive rate capacity and superior cycling ability compared to the batteries assembled with PP separators. This novel design and exciting results offer tremendous potential in the construction of dendrite-free LMBs with high safety. [Display omitted] • A novel siloxane-based single-ion conductor was successfully synthesized. • The SIPE porous membranes were prepared by in-situ sol-gel and NIPS techniques. • The porous membranes exhibit superior electrochemical and thermal performances. • LiFePO 4 /Li batteries using the membranes show good rate and cycling properties. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
03767388
Volume :
668
Database :
Academic Search Index
Journal :
Journal of Membrane Science
Publication Type :
Academic Journal
Accession number :
160961950
Full Text :
https://doi.org/10.1016/j.memsci.2022.121275