Back to Search Start Over

Experiments and Simulation on the Performance of a Liquid-Cooling Thermal Management System including Composite Silica Gel and Mini-Channel Cold Plates for a Battery Module.

Authors :
Lin, Ruheng
Xie, Jiekai
Liang, Rui
Li, Xinxi
Zhang, Guoqing
Li, Binbin
Source :
Energies (19961073). Dec2022, Vol. 15 Issue 23, p9103. 17p.
Publication Year :
2022

Abstract

Lithium batteries in the electric vehicles (EVs) reveal that the operating temperature and temperature uniformity within the battery pack significantly affect its performance. An efficient thermal management system is urgently needed to protect the battery module within suitable temperature range. In this study, the composite silica gel (CSG), coupled with cross-structure mini-channel cold plate (MCP) as the cooling system, has been proposed and applied in a battery module, which can provide a reliable method of controlling battery temperature with low energy consumption. The experimental and simulation results reveal that a composite silica gel-based liquid system can control the temperature below 45 °C and maintain the temperature difference within 2 °C at a 3C discharge rate. Besides, the CSG, coupled with the structure of reciprocal chiasma channels for the battery module, presents an optimum temperature-controlling performance among various cooling structures during the charge and discharge cycling process. This research is expected to provide significant insights into the designing and optimization of thermal management systems. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19961073
Volume :
15
Issue :
23
Database :
Academic Search Index
Journal :
Energies (19961073)
Publication Type :
Academic Journal
Accession number :
160737937
Full Text :
https://doi.org/10.3390/en15239103