Back to Search
Start Over
The isometry group of Wasserstein spaces: the Hilbertian case.
- Source :
-
Journal of the London Mathematical Society . Dec2022, Vol. 106 Issue 4, p3865-3894. 30p. - Publication Year :
- 2022
-
Abstract
- Motivated by Kloeckner's result on the isometry group of the quadratic Wasserstein space W2(Rn)$\mathcal {W}_2(\mathbb {R}^n)$, we describe the isometry group Isom(Wp(E))$\mathrm{Isom}(\mathcal {W}_p(E))$ for all parameters 0<p<∞$0 < p < \infty$ and for all separable real Hilbert spaces E$E$. In particular, we show that Wp(X)$\mathcal {W}_p(X)$ is isometrically rigid for all Polish space X$X$ whenever 0<p<1$0<p<1$. This is a consequence of our more general result: we prove that W1(X)$\mathcal {W}_1(X)$ is isometrically rigid if X$X$ is a complete separable metric space that satisfies the strict triangle inequality. Furthermore, we show that this latter rigidity result does not generalise to parameters p>1$p>1$, by solving Kloeckner's problem affirmatively on the existence of mass‐splitting isometries. As a byproduct of our methods, we also obtain the isometric rigidity of Wp(X)$\mathcal {W}_p(X)$ for all complete and separable ultrametric spaces X$X$ and parameters 0<p<∞$0<p<\infty$. [ABSTRACT FROM AUTHOR]
- Subjects :
- *METRIC spaces
*HILBERT space
*BOREL sets
Subjects
Details
- Language :
- English
- ISSN :
- 00246107
- Volume :
- 106
- Issue :
- 4
- Database :
- Academic Search Index
- Journal :
- Journal of the London Mathematical Society
- Publication Type :
- Academic Journal
- Accession number :
- 160716679
- Full Text :
- https://doi.org/10.1112/jlms.12676