Back to Search Start Over

MSA-MOT: Multi-Stage Association for 3D Multimodality Multi-Object Tracking.

Authors :
Zhu, Ziming
Nie, Jiahao
Wu, Han
He, Zhiwei
Gao, Mingyu
Source :
Sensors (14248220). Nov2022, Vol. 22 Issue 22, p8650. 17p.
Publication Year :
2022

Abstract

Three-dimensional multimodality multi-object tracking has attracted great attention due to the use of complementary information. However, such a framework generally adopts a one-stage association approach, which fails to perform precise matching between detections and tracklets, and, thus, cannot robustly track objects in complex scenes. To address this matching problem caused by one-stage association, we propose a novel multi-stage association method, which consists of a hierarchical matching module and a customized track management module. Specifically, the hierarchical matching module defines the reliability of the objects by associating multimodal detections, and matches detections with trajectories based on the reliability in turn, which increases the utilization of true detections, and, thus, guides accurate association. Then, based on the reliability of the trajectories provided by the matching module, the customized track management module sets maximum missing frames with differences for tracks, which decreases the number of identity switches of the same object and, thus, further improves the association accuracy. By using the proposed multi-stage association method, we develop a tracker called MSA-MOT for the 3D multi-object tracking task, alleviating the inherent matching problem in one-stage association. Extensive experiments are conducted on the challenging KITTI benchmark, and the results show that our tracker outperforms the previous state-of-the-art methods in terms of both accuracy and speed. Moreover, the ablation and exploration analysis results demonstrate the effectiveness of the proposed multi-stage association method. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14248220
Volume :
22
Issue :
22
Database :
Academic Search Index
Journal :
Sensors (14248220)
Publication Type :
Academic Journal
Accession number :
160465823
Full Text :
https://doi.org/10.3390/s22228650