Back to Search Start Over

Pold4 is dispensable for mouse development, DNA replication and DNA repair.

Authors :
Gu, Xueping
Dai, Qinjin
Du, Peng
Li, Ning
Li, Jiahui
Zeng, Simiao
Peng, Shuyi
Tang, Shengjun
Wang, Lei
Zhou, Zhongcheng
Source :
Gene. Jan2023, Vol. 851, pN.PAG-N.PAG. 1p.
Publication Year :
2023

Abstract

• Pold4 knockout mice are viable and there are no obvious negative effects on prenatal development. • Pold4 is dispensable for DNA replication. • Pold4 is dispensable for DNA repair. • Pold4 knockout mice decreased liver tumor incidence and exhibited an extended lifespan. The DNA polymerase delta (Pol δ), a heterotetramer of four subunits (Pol δ4), plays a pivotal role in DNA replication, as well as in DNA damage repair. Pold4, as the smallest subunit of Pol δ, is degraded in response to DNA damage or when entering into S-phase. This leads to the conversion of Pol δ4 to the trimeric complex Pol δ3. However, the contribution of Pold4 has not been fully elucidated in mammals. Cdm1, the Pold4 ortholog in Schizosaccharomyces pombe, is dispensable for cell growth and DNA damage repair, and there are no Pold4 orthologs in Saccharomyces cerevisiae. We previously generated a knockout mouse model of Pold3 and revealed its essential role in genome stability. Unexpectedly, we here found that Pold4 knockout mice are viable and fertile. In addition, Pold4 knockout mice do not exhibit any pathologic changes in the lung and spleen, tissues with the most abundant expression of Pold4. Moreover, Pold4 knockout mouse tail tip fibroblasts (TTF) exhibited normal cell growth, cell cycle, DNA replication, DNA damage and DNA repair capacity. These results suggested that Pol δ3 but not Pol δ4 may be responsible for these processes in normal cells. Interestingly, 19-month-old wild-type (WT) mice had tumors in the liver, while Pold4 knockout mice did not, and Pold4 knockout mice showed increased longevity. In further, this provided evidence suggested that Pold4 could be a potential novel target for lung carcinoma because its depletion does not affect normal cells but does affect cancer cells. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
03781119
Volume :
851
Database :
Academic Search Index
Journal :
Gene
Publication Type :
Academic Journal
Accession number :
160435636
Full Text :
https://doi.org/10.1016/j.gene.2022.147029