Back to Search Start Over

AC conductivity of hBN thin film on Si(111): A high temperature study.

Authors :
Le Thi, Hao
Abate Marye, Shambel
Tumilty, Niall
Source :
Journal of Applied Physics. 11/21/2022, Vol. 132 Issue 19, p1-8. 8p.
Publication Year :
2022

Abstract

Boron nitride (BN) is a layered two-dimensional insulator with excellent chemical, thermal, mechanical, and optical properties. We present a comprehensive characterization of hBN as a dielectric thin film using a high impedance measurement system (100 T Ω) to reveal the AC conductivity and dielectric properties of reactively RF sputtered 200 nm thick films to 480 °C. The experimental results are analyzed with reference to various theoretical models proposed for electrical conduction in disordered or amorphous semiconductors. Electrical measurements indicate that the mechanism behind hBN AC conductivity is via correlated barrier hopping (CBH) and is assigned to localized states at the Fermi level, where N(EF) ∼ 1018 eV−1 cm−3. Our measurements also reveal a σ dc component, with resistance reducing from ∼1010 Ω (50 °C) to 3 × 108 Ω (480 °C). Single RC parallel circuit fits to Cole–Cole plots are achieved signifying a sole conduction path with capacitance values of ∼8 × 10−11 F. These findings may be of interest to material and device scientists and could open new pathways for hBN both as a dielectric material encapsulant and for semiconductor device applications including high-temperature operation. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00218979
Volume :
132
Issue :
19
Database :
Academic Search Index
Journal :
Journal of Applied Physics
Publication Type :
Academic Journal
Accession number :
160348472
Full Text :
https://doi.org/10.1063/5.0121443