Back to Search Start Over

Effect of electronic structure modulation and layer spacing change of NiAl layered double hydroxide nanoflowers caused by cobalt doping on supercapacitor performance.

Authors :
Yue, Xiaoqiu
Dong, Yingxia
Cao, Heng
Wei, Xijun
Zheng, Qiaoji
Sun, Wei
Lin, Dunmin
Source :
Journal of Colloid & Interface Science. Jan2023:Part B, Vol. 630, p973-983. 11p.
Publication Year :
2023

Abstract

The Co2+-doped NiAl-LDH (NiAl-LDH-Co2+- x , x = 0, 0.3, 0.6, 0.9, 1.2, 1.5) nanoflower electrodes with extended layer spacing and electronic modulation are prepared by one-step hydrothermal method for high performance supercapacitors. [Display omitted] Layered double hydroxides (LDHs) with high theoretical capacity have broad prospects in energy storage applications. However, their slow charge transfer kinetics and easy agglomerate hinder their applications in high-performance supercapacitors. Herein, Co2+-doped nickel aluminum layered double hydroxides (NiAl-LDH-Co2+- x , x = 0, 0.3, 0.6, 0.9, 1.2, 1.5) have been designed and prepared by a convenient hydrothermal process. The multicomponent layer structure formed by cobalt doping facilitates sufficient penetration of the electrolyte and accelerates the charge transfer kinetics. Furthermore, the more open layer spacing and electronic interactions induced by Co2+ doping are conducive to accelerating ion de-intercalation, thereby further improving the kinetic behavior of charge storage. Benefiting from the unique microstructure and Co2+ doping effect, the prepared NiAl-LDH-Co2+-0.9 provides a superior specific capacity of 985 C g-1 at 1 A g-1. In addition, the assembled hybrid supercapacitor with the NiAl-LDH-Co2+-0.9 as the positive electrode provides a remarkable energy density of 22.51 Wh kg−1 at a power density of 800 W kg−1 and exhibits an excellent cycle life with 80 % capacity retention after 20,000 cycles. This study demonstrates the great potential of efficient microstructure design and doping strategy in enhancing the charge storage of electrode materials. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00219797
Volume :
630
Database :
Academic Search Index
Journal :
Journal of Colloid & Interface Science
Publication Type :
Academic Journal
Accession number :
160332550
Full Text :
https://doi.org/10.1016/j.jcis.2022.10.033