Back to Search Start Over

Statistical Study of the Ionospheric Slab Thickness at Yakutsk High-Latitude Station.

Authors :
Feng, Jian
Zhang, Yuqiang
Xu, Na
Chen, Bo
Xu, Tong
Wu, Zhensen
Deng, Zhongxin
Liu, Yi
Wang, Zhuangkai
Zhou, Yufeng
Zhou, Chen
Zhao, Zhengyu
Source :
Remote Sensing. Nov2022, Vol. 14 Issue 21, p5309. 16p.
Publication Year :
2022

Abstract

The ionospheric equivalent slab thickness (EST, also named τ) is defined as the ratio of the total electron content (TEC) to the F2-layer peak electron density (NmF2), and it is a significant parameter representative of the ionosphere. This paper presents a comprehensive statistical study of the ionospheric slab thickness at Yakutsk, located at the high latitude of East Asia, using the GPS-TEC and ionosonde NmF2 data for the years 2010–2017. The results show that the τ has different diurnal and seasonal variations in high- and low-solar-activity years, and the τ is greatest in the winter, followed by the equinox, and it is smallest in the summer in both high- and low-solar-activity years, except during the noontime of low-solar-activity years. Specifically, the τ in inter of high-solar-activity year shows an approximate single peak pattern with the peak around noon, while it displays a double-peak pattern with the pre-sunrise and sunset peaks in winter of the low-solar-activity years. Moreover, the τ in the summer and equinox have smaller diurnal variations, and there are peaks with different magnitudes during the sunrise and post-sunset periods. The mainly diurnal variation of τ in different seasons of high- and low-solar-activity years can be explained within the framework of relative variation of TEC and NmF2 during the corresponding period. By defining the disturbance index (DI), which can visually assess the relationship between instantaneous values and the median, we found that the geomagnetic storm would enhance the τ at Yakutsk. An example on 7 June 2013 is also presented to analyze the physical mechanism. It should be due to the intense particle precipitation and expanded plasma convection electric field during the storm at high-latitude Yakutsk station. The results would improve the current understanding of climatological and storm-time behavior of τ at high latitudes in East Asia. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20724292
Volume :
14
Issue :
21
Database :
Academic Search Index
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
160219627
Full Text :
https://doi.org/10.3390/rs14215309