Back to Search
Start Over
Indirect organogenesis-mediated high frequency conversion of non-embryonic synthetic seeds, essential oil profiling and antibacterial activity in genetically stable plants of Patchouli.
- Source :
-
3 Biotech . 11/14/2022, Vol. 12 Issue 12, p1-16. 16p. - Publication Year :
- 2022
-
Abstract
- Patchouli is a prized tropical medicinal herb with broad-spectrum therapeutic importance. The present research work describes development of an efficient callus-mediated plant regeneration protocol along with associated germplasm portability system (via alginate-encapsulation). Using 1.5 mg/l α-naphthalene acetic acid (NAA) and 1.0 mg/l 2, 4-dichlorophenoxy acetic acid (2, 4-D), highly proliferative friable calli were produced that subsequently underwent organogenesis in combinatorial cytokinin treatment to yield multiple shoot clusters. The highest frequency of shoot formation was achieved using 1.5 mg/l NAA with 1.5 mg/l 6-benzylaminopurine (BAP) in Murashige and Skoog (MS) medium. In vitro-derived shoot tips were encapsulated with 3% sodium alginate and 100 mM CaCl2 solution. The encapsulated beads were germinated in MS media with various concentrations of polyamines, where the highest regeneration frequency was observed with 1.5 mg/l spermidine. The regenerated shoots were rooted in basal MS medium and were successfully acclimatized with 96% survival rate. Genetic homogeneity amongst the regenerated plantlets was validated using Start Codon Targeted polymorphism (SCoT) and CAAT box-derived polymorphism (CBDP) ascertaining a high degree of clonal fidelity. The essential oil (EO) profiling of the donor plant and the in vitro-derived plantlets revealed identical composition. Furthermore, the antibacterial activities of various tissue extracts and extracted EOs were evaluated against the opportunistic pathogens viz. Klebsiella pneumoniae (MTCC 109), Salmonella typhii (MTCC 733), Micrococcus luteus (MTCC 2470) and Staphylococcus aureus (MTCC 96). The minimum inhibitory concentration (MIC) ranged from 0.31 to 5.0 mg/ml and 2.5 to 5.0 mg/ml against Gram-positive and Gram-negative bacteria, respectively. Eventually, the present research provides a holistic insight into the rapid regeneration of quality planting material as well as pharmacological bioprospection of patchouli along with the scope of further qualitative improvement via genetic transformation. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 2190572X
- Volume :
- 12
- Issue :
- 12
- Database :
- Academic Search Index
- Journal :
- 3 Biotech
- Publication Type :
- Academic Journal
- Accession number :
- 160202029
- Full Text :
- https://doi.org/10.1007/s13205-022-03302-3