Back to Search Start Over

Glacier Mass Loss Simulation Based on Remote Sensing Data: A Case Study of the Yala Glacier and the Qiyi Glacier in the Third Pole.

Authors :
Yao, Ruzhen
Shi, Jiancheng
Source :
Remote Sensing. Oct2022, Vol. 14 Issue 20, p5190-5190. 13p.
Publication Year :
2022

Abstract

The climate warming over the Third Pole is twice as large as that in other regions and glacier mass loss is considered to be more intensive in the region. However, due to the vast geographical differences, the characteristics of glacier mass loss might be very different between different parts of the Third Pole, such as between the southern and northern Third Pole. It is, therefore, very important to clarify the characteristics of glacier mass loss between different parts of the Third Pole, particularly between the southern and northern Third Pole. We selected the Yala Glacier in the Central Himalayas and the Qiyi Glacier in the Qilian Mountains to study the different characteristics of glacier mass loss between the southern and northern Third Pole using remote sensing data and in situ data. Based on the results, we found that the Yala Glacier has not only been in a status of mass loss but also in a status of intensive and accelerating mass loss. Our analysis showed that the average multi-year mass loss of the Yala Glacier is −736 mm w.e.a−1, with a maximum of −1815 mm w.e.a−1. At the same time, the Qiyi Glacier has experienced a mild glacier mass loss process compared with the Yala Glacier. The Qiyi Glacier's mass loss is −567 mm w.e.a−1 with a maximum of −1516 mm w.e.a−1. Our results indicate that the mass loss of the Yala Glacier is much stronger than that of the Qiyi Glacier. The major cause of the stronger mass loss of the Yala Glacier is from the decrease of glacier accumulation associated with precipitation decrease under the weakening Indian monsoon. Other factors have also contributed to the more intensive mass loss of the Yala Glacier. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20724292
Volume :
14
Issue :
20
Database :
Academic Search Index
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
160094425
Full Text :
https://doi.org/10.3390/rs14205190