Back to Search Start Over

A CRISPR/Cas12a-mediated, DNA extraction and amplification-free, highly direct and rapid biosensor for Salmonella Typhimurium.

Authors :
Duan, Miaolin
Li, Bingyan
Zhao, Yijie
Liu, Yana
Liu, Yi
Dai, Ruitong
Li, Xingmin
Jia, Fei
Source :
Biosensors & Bioelectronics. Jan2023, Vol. 219, pN.PAG-N.PAG. 1p.
Publication Year :
2023

Abstract

CRISPR/Cas-based biosensors were typically used for nucleic-acid targets detection and complex DNA extraction and amplification procedures were usually inevitable. Here, we report a C RISPR/C a s12a-mediated, DNA ex t raction and amplifi c ation-free, h ighly dir e ct and rapid biosenso r (abbreviated as "CATCHER") for Salmonella Typhimurium (S. Typhimurium) with a simple (3 steps) and fast (∼2 h) sensing workflow. Magnetic nanoparticle immobilized anti- S. Typhimurium antibody was worked as capture probe to capture the target and provide movable reaction interface. Colloidal gold labeled with anti- S. Typhimurium antibody and DNase I was used as detection probe to bridge the input target and output signal. First, in the presence of S. Typhimurium, an immuno-sandwich structure was formed. Second, DNase I in sandwich structure degraded the valid, complete activator DNA to invalid DNA fragments which can't trigger the trans -cleavage activity of Cas12a. Finally, the integrity of reporter DNA was preserved presenting a low fluorescence signal. Conversely, in the absence of S. Typhimurium, strong fluorescence recovery appeared owing to the cutting of reporter by activated Cas12a. Significantly, the proposed "CATCHER" showed satisfactory detection performance for S. Typhimurium with the limit of detection (LOD) of 7.9 × 101 CFU/mL in 0.01 M PBS and 6.31 × 103 CFU/mL in spiked chicken samples, providing a general platform for non-nucleic acid targets. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
09565663
Volume :
219
Database :
Academic Search Index
Journal :
Biosensors & Bioelectronics
Publication Type :
Academic Journal
Accession number :
159978975
Full Text :
https://doi.org/10.1016/j.bios.2022.114823