Back to Search Start Over

Breeding system and geospatial variation shape the population genetics of Triodanis perfoliata.

Authors :
Tackett, Morgan
Berg, Colette
Simmonds, Taylor
Lopez, Olivia
Brown, Jason
Ruggiero, Robert
Weber, Jennifer
Source :
Ecology & Evolution (20457758). Oct2022, Vol. 12 Issue 10, p1-14. 14p.
Publication Year :
2022

Abstract

Both intrinsic and extrinsic forces work together to shape connectivity and genetic variation in populations across the landscape. Here we explored how geography, breeding system traits, and environmental factors influence the population genetic patterns of Triodanis perfoliata, a widespread mix‐mating annual plant in the contiguous US. By integrating population genomic data with spatial analyses and modeling the relationship between a breeding system and genetic diversity, we illustrate the complex ways in which these forces shape genetic variation. Specifically, we used 4705 single nucleotide polymorphisms to assess genetic diversity, structure, and evolutionary history among 18 populations. Populations with more obligately selfing flowers harbored less genetic diversity (π: R2 =.63, p =.01, n = 9 populations), and we found significant population structuring (FST = 0.48). Both geographic isolation and environmental factors played significant roles in predicting the observed genetic diversity: we found that corridors of suitable environments appear to facilitate gene flow between populations, and that environmental resistance is correlated with increased genetic distance between populations. Last, we integrated our genetic results with species distribution modeling to assess likely patterns of connectivity among our study populations. Our landscape and evolutionary genetic results suggest that T. perfoliata experienced a complex demographic and evolutionary history, particularly in the center of its distribution. As such, there is no singular mechanism driving this species' evolution. Together, our analyses support the hypothesis that the breeding system, geography, and environmental variables shape the patterns of diversity and connectivity of T. perfoliata in the US. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20457758
Volume :
12
Issue :
10
Database :
Academic Search Index
Journal :
Ecology & Evolution (20457758)
Publication Type :
Academic Journal
Accession number :
159936846
Full Text :
https://doi.org/10.1002/ece3.9382