Back to Search Start Over

Prone Positioning Decreases Inhomogeneity and Improves Dorsal Compliance in Invasively Ventilated Spontaneously Breathing COVID-19 Patients—A Study Using Electrical Impedance Tomography.

Authors :
Pierrakos, Charalampos
van der Ven, Fleur L. I. M.
Smit, Marry R.
Hagens, Laura A.
Paulus, Frederique
Schultz, Marcus J.
Bos, Lieuwe D. J.
Source :
Diagnostics (2075-4418). Oct2022, Vol. 12 Issue 10, p2281-N.PAG. 12p.
Publication Year :
2022

Abstract

Background: We studied prone positioning effects on lung aeration in spontaneously breathing invasively ventilated patients with coronavirus disease 2019 (COVID-19). Methods: changes in lung aeration were studied prospectively by electrical impedance tomography (EIT) from before to after placing the patient prone, and back to supine. Mixed effect models with a random intercept and only fixed effects were used to evaluate changes in lung aeration. Results: fifteen spontaneously breathing invasively ventilated patients were enrolled, and remained prone for a median of 19 [17 to 21] hours. At 16 h the global inhomogeneity index was lower. At 2 h, there were neither changes in dorsal nor in ventral compliance; after 16 h, only dorsal compliance (βFe +18.9 [95% Confidence interval (CI): 9.1 to 28.8]) and dorsal end-expiratory lung impedance (EELI) were increased (βFe, +252 [95% CI: 13 to 496]); at 2 and 16 h, dorsal silent spaces was unchanged (βFe, –4.6 [95% CI: –12.3 to +3.2]). The observed changes induced by prone positioning disappeared after turning patients back to supine. Conclusions: in this cohort of spontaneously breathing invasively ventilated COVID-19 patients, prone positioning decreased inhomogeneity, increased lung volumes, and improved dorsal compliance. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20754418
Volume :
12
Issue :
10
Database :
Academic Search Index
Journal :
Diagnostics (2075-4418)
Publication Type :
Academic Journal
Accession number :
159912116
Full Text :
https://doi.org/10.3390/diagnostics12102281