Back to Search
Start Over
Wholesale Electricity Price Forecasting Using Integrated Long-Term Recurrent Convolutional Network Model.
- Source :
-
Energies (19961073) . Oct2022, Vol. 15 Issue 20, p7606-N.PAG. 16p. - Publication Year :
- 2022
-
Abstract
- Electricity price forecasts have become a fundamental factor affecting the decision-making of all market participants. Extreme price volatility has forced market participants to hedge against volume risks and price movements. Hence, getting an accurate price forecast from a few hours to a few days ahead is very important and very challenging due to various factors. This paper proposes an integrated long-term recurrent convolutional network (ILRCN) model to predict electricity prices considering the majority of contributing attributes to the market price as input. The proposed ILRCN model combines the functionalities of a convolutional neural network and long short-term memory (LSTM) algorithm along with the proposed novel conditional error correction term. The combined ILRCN model can identify the linear and nonlinear behavior within the input data. ERCOT wholesale market price data along with load profile, temperature, and other factors for the Houston region have been used to illustrate the proposed model. The performance of the proposed ILRCN electricity price forecasting model is verified using performance/evaluation metrics like mean absolute error and accuracy. Case studies reveal that the proposed ILRCN model shows the highest accuracy and efficiency in electricity price forecasting as compared to the support vector machine (SVM) model, fully connected neural network model, LSTM model, and the traditional LRCN model without the conditional error correction stage. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 19961073
- Volume :
- 15
- Issue :
- 20
- Database :
- Academic Search Index
- Journal :
- Energies (19961073)
- Publication Type :
- Academic Journal
- Accession number :
- 159911833
- Full Text :
- https://doi.org/10.3390/en15207606