Back to Search Start Over

The long-term uncertainty of biodegradable mulch film residues and associated microplastics pollution on plant-soil health.

Authors :
Zhou, Jie
Jia, Rong
Brown, Robert W.
Yang, Yadong
Zeng, Zhaohai
Jones, Davey L.
Zang, Huadong
Source :
Journal of Hazardous Materials. Jan2023, Vol. 442, pN.PAG-N.PAG. 1p.
Publication Year :
2023

Abstract

Biodegradable mulch film potentially offers an encouraging alternative to conventional (petroleum-based) plastic films. Since biodegradable films are more susceptible to rapid degradation, more microplastics (MPs) are likely to be generated than conventional films within the same time frame, probably leading to more severe MPs pollution and associated effects. However, the effect of biodegradable mulch film residues and associated MPs pollution on plant-soil health remains uncertainty. Here, we evaluated the potential effect of bio-MPs pollution on soil carbon (C) and nutrient (i.e., N and P) cycling, soil biology (microorganisms and mesofauna), and plant health, as these are crucial to agroecosystem functioning and the delivery of key ecosystem services. Unlike the inert (and therefore recalcitrant) C contained within petroleum-based MPs, at least 80% of the C from bio-MPs is converted to CO 2 , with up to 20% immobilized in living microbial biomass (i.e., < 0.05 t C ha−1). Although biodegradable films are unlikely to be important in promoting soil C storage, they may accelerate microbial biomass turnover in the short term, as well as CO 2 production. Compared to conventional MPs, bio-MPs degradation is more pronounced, thereby inducing greater alterations in microbial diversity and community composition. This may further alter N 2 O and CH 4 emissions, and ultimately resulting in unpredictable consequences for global climate warming. The extent to which this may occur, however, has yet to be shown in either laboratory or field studies. In addition, bio-MPs have a large chance of forming nanoplastics, potentially causing a stronger toxic effect on plants relative to conventional MPs. Consequently, this would influence plant health, crop productivity, and food safety, leading to potential health risks. It is unclear, however, if these are direct effects on key plant processes (e.g. signaling, cell expansion) or indirect effects (e.g. nutrient deficiency or acidification). Overall, the question as to whether biodegradable mulch films offer a promising alternative to solve the conventional plastic legacy in soil over the long term remains unclear. [Display omitted] • Bioplastics (Bio-MPs) are unlikely to be important in promoting soil C storage. • Bio-MPs act as labile C sources to stimulate microbial growth and soil N and P cycling. • Bio-MPs are much easier to form nanoplastics and cause stronger toxic to plants. • Uncertainty of bio-MPs pollution remains on plant-soil health. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
03043894
Volume :
442
Database :
Academic Search Index
Journal :
Journal of Hazardous Materials
Publication Type :
Academic Journal
Accession number :
159820138
Full Text :
https://doi.org/10.1016/j.jhazmat.2022.130055