Back to Search
Start Over
Nitrogen-doped carbon layer on cellulose derived free-standing carbon paper for high-rate supercapacitors.
- Source :
-
Applied Surface Science . Jan2023, Vol. 608, pN.PAG-N.PAG. 1p. - Publication Year :
- 2023
-
Abstract
- [Display omitted] • Polyformamide-derived carbon nanowire arrays are in-situ synthesized as N-containing carbon coatings for cellulose-based carbon fibers. • The green H 2 O 2 solution acts as both dopant and activator. • The assembled solid-state symmetric supercapacitor yields encouraging capacitive properties. • This work paves a cost-effective and universal avenue toward structural and compositional engineering of electrodes in energy-related devices. Free-standing porous carbon have risen to prominent electrode materials for high-rate solid-state supercapacitors, yet they are still plagued by uneconomical petrochemical feedstocks, tedious slurry-casting processes, and suboptimal performance. Herein, a dual‐strategy of combining free-standing nitrogen-doped carbon nanowire array coating and pore engineering is designed to boost the performance of cellulose-derived carbon electrodes. Polyformamide-derived carbon nanowire arrays are in-situ synthesized as N-containing carbon coatings for cellulose-based carbon fibers. More intriguingly, H 2 O 2 activation further enhances the hierarchical porous structure. Benefiting from the synergistic effect of free-standing feature, high electrolyte compatibility, interconnected conductive fiber networks, well-developed hierarchical porous structure and stable heteroatom-doped carbon coatings, the designed electrodes possess high accessibility of electrolyte ions and effective ion/electron transport channels. Thus, the specific capacitance reaches 275.6 F g−1 at 0.5 A g−1 for aqueous supercapacitor. The solid-state symmetric supercapacitor demonstrates the specific capacitance of 126.5 F g−1 at 0.5 A g−1 with the capacitance retention of 64.5% even when the current densities increased by 40-folds. Their promising energy density (17.5 Wh kg−1) and power density (12.3 kW kg−1) closing to the state-of-the-art biomass-derived free-standing solid-state symmetric supercapacitors. This breakthrough symbolizes a step forward in the advancement of biomass as high‐performance electrodes for supercapacitors. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 01694332
- Volume :
- 608
- Database :
- Academic Search Index
- Journal :
- Applied Surface Science
- Publication Type :
- Academic Journal
- Accession number :
- 159819735
- Full Text :
- https://doi.org/10.1016/j.apsusc.2022.155144