Back to Search Start Over

Strategies for formulation optimization of composite positive electrodes for lithium ion batteries based on layered oxide, spinel, and olivine-type active materials.

Authors :
Weichert, Anna
Göken, Vinzenz
Fromm, Olga
Beuse, Thomas
Winter, Martin
Börner, Markus
Source :
Journal of Power Sources. Dec2022, Vol. 551, pN.PAG-N.PAG. 1p.
Publication Year :
2022

Abstract

Electrode processing and performance strongly depend on the active material. Maximizing the active material content of positive composite electrodes enables low cost and high energy density. However, this maximization cannot reach 100%, as composite electrodes additionally consist of binder to provide mechanical integrity and conductive additive to enhance electronic conductivity, which in combination create a flexible porous microstructure for appropriate electron and lithium transport. In this study, the influence of three positive active material classes, layered oxide LiNi 0.6 Mn 0.2 Co 0.2 O 2 , spinel-type LiMn 2 O 4 and olivine-type carbon-coated LiFePO 4 , were investigated regarding the optimum amount of polyvinylidene difluoride as binder and carbon black as conductive additive to achieve high mechanical stability as well as high electronic and ionic conductivity within composite electrodes. Formulation optimization was conducted and compared to a reference electrode formulation with regard to physical, mechanical, electronic and electrochemical properties. In a first step, the binder amount was optimized for each active material class by varying the ratio of binder content to surface area of the solid electrode components. In a second step, the critical conductive additive content was determined. Overall, this strategy allows to decipher material class dependent optimized electrode formulations for high energy density composite electrodes with maximized active material content. [Display omitted] • Strategy to develop material class dependent electrode formulations. • Active material particle surface and size affects binder and conductive additive amount. • Carbon-coated LiFePO 4 based composite electrodes show a high SOH with low conductive additive content. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
03787753
Volume :
551
Database :
Academic Search Index
Journal :
Journal of Power Sources
Publication Type :
Academic Journal
Accession number :
159756133
Full Text :
https://doi.org/10.1016/j.jpowsour.2022.232179