Back to Search Start Over

Optimal Powertrain Sizing of Series Hybrid Coach Running on Diesel and HVO for Lifetime Carbon Footprint and Total Cost Minimisation.

Authors :
Pardhi, Shantanu
El Baghdadi, Mohamed
Hulsebos, Oswin
Hegazy, Omar
Source :
Energies (19961073). Oct2022, Vol. 15 Issue 19, p6974. 28p.
Publication Year :
2022

Abstract

This article aims to calculate, analyse and compare the optimal powertrain sizing solutions for a long-haul plug-in series hybrid coach running on diesel and hydrotreated vegetable oil (HVO) using a co-design optimisation approach for: (1) lowering lifetime carbon footprint; (2) minimising the total cost of ownership (TCO); (3) finding the right sizing compromise between environmental impact and economic feasibility for the two fuel cases. The current vehicle use case derived from the EU H2020 LONGRUN project features electrical auxiliary loads and a 100 km zero urban emission range requiring a considerable battery size, which makes its low carbon footprint and cost-effective sizing a crucial challenge. Changing the objective between environmental impact and overall cost minimisation or switching the energy source from diesel to renewable HVO could also significantly affect the optimal powertrain dimensions. The approach uses particle swarm optimisation in the outer sizing loop while energy management is implemented using an adaptive equivalent consumption minimisation strategy (A-ECMS). Usage of HVO fuel over diesel offered an approximately 62% reduction in lifetime carbon footprint for around a 12.5% increase in overall costs across all sizing solutions. For such an unconventional powertrain topology, the fuel economy-focused solution neither achieved the lowest carbon footprint nor overall costs. In comparison, C O 2 − cost balanced sizing resulted in reductions close to the single objective-focused solutions (5.7% against 5.9% for the C O 2 solution, 7.7% against 7.9% for the TCO solution on HVO) with lowered compromise on other side targets ( C O 2 reduction of 5.7% against 4.9% found in the TCO-focused solution, TCO lowering of 7.7% against 4.4% found in the C O 2 -focused solution). [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19961073
Volume :
15
Issue :
19
Database :
Academic Search Index
Journal :
Energies (19961073)
Publication Type :
Academic Journal
Accession number :
159668947
Full Text :
https://doi.org/10.3390/en15196974