Back to Search Start Over

Cost-efficient collagen fibrous aerogel cross-linked by Fe (III) /silver nanoparticle complexes for simultaneously degrading antibiotics, eliminating antibiotic-resistant bacteria, and adsorbing heavy metal ions from wastewater.

Authors :
Wang, Rui
Zhao, Peng
Yu, Ruiquan
Jiang, Jing
Liang, Ruifeng
Liu, Gongyan
Source :
Separation & Purification Technology. Dec2022, Vol. 303, pN.PAG-N.PAG. 1p.
Publication Year :
2022

Abstract

[Display omitted] • Sustainable and facile fabrication of collagen fibrous aerogels cross-linked by Fe (III) ions with silver nanoparticles. • Flexible AgNPs/Fe@CF aerogel exhibited excellent mechanical performance and softness. • Robust AgNPs/Fe@CF aerogel showed admirable efficiency for removal of antibiotic and ARB. • Reliable AgNPs/Fe@CF aerogel revealed effective adsorption ability for heavy metal ions. The development of antibacterial and catalytic adsorbents is an ideal strategy to simultaneously remove antibiotics, antibiotic-resistant bacteria, and heavy metal ions from wastewater. Herein, a porous and renewable aerogel was prepared as a lightweight adsorbent by using cost-efficient collagen fibers (CF) from the leather industry. Further, the complexes of Fe3+ ions with gallic acids modified silver nanoparticles (GA@AgNPs) were selected to sufficiently cross-link the hierarchical CF structure based on coordinated complexation, leading to good mechanical property of the resulted aerogel (AgNPs/Fe@CF). Benefiting from the incorporated AgNPs, AgNPs/Fe@CF aerogel exhibited high antibacterial activity against Tetracycline-resistant E. coli and Methicillin-resistant Staphylococcus aureus. Moreover, the cross-linked AgNPs could accelerate the redox cycle of Fe3+/Fe2+ by facilitating electron transfer and thus enhance the activation of peroxymonosulfate to produce more •OH and SO 4 •− radicals. Therefore, this AgNPs/Fe@CF aerogel demonstrated synergetic Fenton-like catalytic degradation efficiency for 5 different antibiotics (over 90 % within 30 min). In addition, abundant hydroxyl and carboxyl groups on collagen fibers endow desired capacity (greater than70 mg/g) to the porous aerogel, which is able to remove Cr (Ⅵ), Ni (Ⅱ), and Pb (Ⅱ). This study explores a new pathway for the construction of multifunctional aerogel materials for enhancing the purification of wastewater. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
13835866
Volume :
303
Database :
Academic Search Index
Journal :
Separation & Purification Technology
Publication Type :
Academic Journal
Accession number :
159657405
Full Text :
https://doi.org/10.1016/j.seppur.2022.122209