Back to Search Start Over

Parameter inversion of a polydisperse system in small-angle scattering.

Authors :
Kuangdai Leng
King, Stephen
Snow, Tim
Rogers, Sarah
Markvardsen, Anders
Maheswaran, Satheesh
Thiyagalingam, Jeyan
Source :
Journal of Applied Crystallography. Aug2022, Vol. 55 Issue 4, p966-977. 12p.
Publication Year :
2022

Abstract

A general method to invert parameter distributions of a polydisperse system using data acquired from a small-angle scattering (SAS) experiment is presented. The forward problem, i.e. calculating the scattering intensity given the distributions of any causal parameters of a theoretical model, is generalized as a multi-linear map, characterized by a high-dimensional Green tensor that represents the complete scattering physics. The inverse problem, i.e. finding the maximum-likelihood estimation of the parameter distributions (in free form) given the scattering intensity (either a curve or an image) acquired from an experiment, is formulated as a constrained nonlinear programming (NLP) problem. This NLP problem is solved with high accuracy and efficiency via several theoretical and computational enhancements, such as an automatic data scaling for accuracy preservation and GPU acceleration for large-scale multiparameter systems. Six numerical examples are presented, including both synthetic tests and solutions to real neutron and X-ray data sets, where the method is compared with several existing methods in terms of their generality, accuracy and computational cost. These examples show that SAS inversion is subject to a high degree of non-uniqueness of solution or structural ambiguity. With an ultra-high accuracy, the method can yield a series of near-optimal solutions that fit data to different acceptable levels. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00218898
Volume :
55
Issue :
4
Database :
Academic Search Index
Journal :
Journal of Applied Crystallography
Publication Type :
Academic Journal
Accession number :
159591140
Full Text :
https://doi.org/10.1107/S1600576722006379