Back to Search Start Over

Incorporating concepts of biodiversity into modern aquaculture: macroalgal species richness enhances bioremediation efficiency in a lumpfish hatchery.

Authors :
Knoop, Jessica
Barrento, Sara
Lewis, Robert
Walter, Bettina
Griffin, John N.
Source :
Algae. Sep2022, Vol. 37 Issue 3, p213-226. 14p.
Publication Year :
2022

Abstract

Aquaculture is one of the fastest growing food producing sectors; however, intensive farming techniques of finfish have raised environmental concerns, especially through the release of excessive nutrients into surrounding waters. Biodiversity has been widely shown to enhance ecosystem functions and services, but there has been limited testing or application of this key ecological relationship in aquaculture. This study tested the applicability of the biodiversity-function relationship to integrated multi-trophic aquaculture (IMTA), asking whether species richness can enhance the efficiency of macroalgal bioremediation of wastewater from finfish aquaculture. Five macroalgal species (Chondrus crispus, Fucus serratus, Palmaria palmata, Porphyra dioica, and Ulva sp.) were cultivated in mono- and polyculture in water originating from a lumpfish (Cyclopterus lumpus) hatchery. Total seaweed biomass production, specific growth rates (SGR), and the removal of ammonium (NH4+), total oxidised nitrogen (TON), and phosphate (PO43-) from the wastewater were measured. Species richness increased total seaweed biomass production by 11% above the average component monoculture, driven by an increase in up to 5% in SGR of fast-growing macroalgal species in polycultures. Macroalgal species richness further enhanced ammonium uptake by 25%, and TON uptake by nearly 10%. Phosphate uptake was not improved by increased species richness. The increased uptake of NH4+ and TON with increased macroalgal species richness suggests the complementary use of different nitrogen forms (NH4+ vs. TON) in macroalgal polycultures. The results demonstrate enhanced bioremediation efficiency by increased macroalgal species richness and show the potential of integrating biodiversity-function research to improve aquaculture sustainability. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
12262617
Volume :
37
Issue :
3
Database :
Academic Search Index
Journal :
Algae
Publication Type :
Academic Journal
Accession number :
159562395
Full Text :
https://doi.org/10.4490/algae.2022.37.5.12