Back to Search Start Over

Loss of sphingosine kinase 2 protects against cisplatin-induced kidney injury.

Authors :
Dengpiao Xie
Gaizun Hu
Chaoling Chen
Ahmadinejad, Fereshteh
Weili Wang
Pin-Lan Li
Gewirtz, David A.
Ningjun Li
Source :
American Journal of Physiology: Renal Physiology. Sep2022, Vol. 323 Issue 3, pF322-F334. 13p.
Publication Year :
2022

Abstract

Cisplatin is an established chemotherapeutic drug for treatment of solid-organ cancers and is the primary drug used in the treatment of head and neck cancer; however, cisplatin-induced nephrotoxicity largely limits its clinical use. Inhibition of sphingosine kinase 2 (SphK2) has been demonstrated to alleviate various kidney diseases. Therefore, we hypothesized that inhibition of SphK2 could also protect against cisplatin-induced nephrotoxicity. Results from the present study showed that the SphK2 inhibitor ABC294640 or knockdown of SphK2 by siRNA blocked the cisplatin-induced increase of cellular injury markers (neutrophil gelatinase-associated lipocalin, kidney injury molecule-1, and cleaved caspase-3) by Western blot analysis in HK-2 cells, a human renal tubular cell line. In addition, SphK2 inhibition blocked cisplatin-induced activation of NF-κB by Western blot analysis and immunostaining analysis. Furthermore, SphK2 inhibition suppressed cisplatin-induced increases of proinflammatory markers (NLR family pyrin domain containing 3, interleukin-1β, and interleukin-6). Genetic deletion of the SphK2 gene in mice further confirmed that inhibition of SphK2 protected against cisplatin-induced kidney damage in vivo. Compared with wild-type mice, SphK2 knockout mice exhibited less renal dysfunction and reduced promotion of kidney injury markers, inflammatory factors, tubular morphology damage, and fibrotic staining. At the same time, the SphK2 inhibitor ABC294640 failed to interfere with the activity of cisplatin or radiation in two cell culture models of head and neck cancer. It is concluded that inhibition of Sphk2 protects against cisplatin-induced kidney injury. SphK2 may be used as a potential therapeutic target for the prevention or treatment of cisplatininduced kidney injury. NEW & NOTEWORTHY The present study provides new findings that sphingosine kinase 2 (SphK2) is highly expressed in renal tubules, cisplatin treatment increases the expression of SphK2 in proximal tubular cells and kidneys, and inhibition of SphK2 alleviates cisplatin-induced kidney injury by suppressing the activation of NF-κB, production of inflammatory factors, and apoptosis. SphK2 may serve as a potential therapeutic target for the prevention or treatment of cisplatin-induced nephrotoxicity. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
1931857X
Volume :
323
Issue :
3
Database :
Academic Search Index
Journal :
American Journal of Physiology: Renal Physiology
Publication Type :
Academic Journal
Accession number :
159315220
Full Text :
https://doi.org/10.1152/ajprenal.00229.2021