Back to Search Start Over

Optical Satellite Eavesdropping.

Authors :
Yahia, Olfa Ben
Erdogan, Eylem
Kurt, Gunes Karabulut
Altunbas, Ibrahim
Yanikomeroglu, Halim
Source :
IEEE Transactions on Vehicular Technology. Sep2022, Vol. 71 Issue 9, p10126-10131. 6p.
Publication Year :
2022

Abstract

In recent years, satellite communication (SatCom) systems have been widely used for navigation, broadcasting application, disaster recovery, weather sensing, and even spying on the Earth. As the number of satellites is highly increasing and with the radical revolution in wireless technology, eavesdropping on SatCom will be possible in next-generation networks. In this context, we introduce the satellite eavesdropping approach, where an eavesdropping spacecraft can intercept optical communications established between a low Earth orbit satellite and a high altitude platform station (HAPS). Specifically, we propose two practical eavesdropping scenarios for satellite-to-HAPS (downlink) and HAPS-to-satellite (uplink) optical communications, where the attacker spacecraft can eavesdrop on the transmitted signal or the received signal. To quantify the secrecy performance of the scenarios, the average secrecy capacity and secrecy outage probability expressions are derived and validated with Monte Carlo simulations. Moreover, the secrecy throughput of the proposed models is investigated. We observe that turbulence-induced fading significantly impacts the secrecy performance of free-space optical communication. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00189545
Volume :
71
Issue :
9
Database :
Academic Search Index
Journal :
IEEE Transactions on Vehicular Technology
Publication Type :
Academic Journal
Accession number :
159210968
Full Text :
https://doi.org/10.1109/TVT.2022.3176119